钴
催化作用
材料科学
氧化钴
纳米颗粒
立方氧化锆
氧化物
甲烷化
过渡金属
金属
无机化学
化学工程
二氧化锆
纳米材料基催化剂
费托法
纳米技术
化学
冶金
有机化学
陶瓷
选择性
工程类
作者
Alexander Parastaev,Valery Muravev,Elisabet Huertas Osta,Tobias F. Kimpel,Jérôme F. M. Simons,Arno J. F. van Hoof,Evgeny A. Uslamin,Long Zhang,Job J. C. Struijs,Dudari B. Burueva,Ekaterina V. Pokochueva,Kirill V. Kovtunov,Igor V. Koptyug,Ignacio J. Villar‐García,Carlos Escudero,Thomas Altantzis,Pei Liu,Armand Béché,Sara Bals,Nikolay Kosinov,Emiel J. M. Hensen
出处
期刊:Nature Catalysis
[Springer Nature]
日期:2022-11-17
卷期号:5 (11): 1051-1060
被引量:75
标识
DOI:10.1038/s41929-022-00874-4
摘要
A high dispersion of the active metal phase of transition metals on oxide supports is important when designing efficient heterogeneous catalysts. Besides nanoparticles, clusters and even single metal atoms can be attractive for a wide range of reactions. However, many industrially relevant catalytic transformations suffer from structure sensitivity, where reducing the size of the metal particles below a certain size substantially lowers catalytic performance. A case in point is the low activity of small cobalt nanoparticles in the hydrogenation of CO and CO2. Here we show how engineering of catalytic sites at the metal–oxide interface in cerium oxide–zirconium dioxide (ceria–zirconia)-supported cobalt can overcome this structure sensitivity. Few-atom cobalt clusters dispersed on 3 nm cobalt(II)-oxide particles stabilized by ceria–zirconia yielded a highly active CO2 methanation catalyst with a specific activity higher than that of larger particles under the same conditions. Metal utilization is important for the overall efficiency of heterogeneous catalysts, but reducing the amount of precious active phases is challenging due to intrinsic properties such as structure sensitivity. Now Hensen and colleagues engineer the interfaces of supported cobalt catalysts to overcome such structure sensitivity limitations in CO2 hydrogenation.
科研通智能强力驱动
Strongly Powered by AbleSci AI