Optimizing space cooling of a nearly zero energy building via model predictive control: Energy cost vs comfort

设定值 阿什拉1.90 模型预测控制 空调 热舒适性 模拟 帕累托原理 能量(信号处理) 冷负荷 多目标优化 控制理论(社会学) MATLAB语言 工程类 数学优化 计算机科学 汽车工程 控制(管理) 气象学 数学 统计 机械工程 物理 人工智能 操作系统
作者
Fabrizio Ascione,Rosa Francesca De Masi,Valentino Festa,Gerardo Maria Mauro,Giuseppe Peter Vanoli
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:278: 112664-112664 被引量:2
标识
DOI:10.1016/j.enbuild.2022.112664
摘要

The space conditioning of buildings is liable for more than 10 % of World final energy uses and related CO2-eq emissions. Such share must be drastically reduced to pursue sustainability by optimizing both energy design and devices control. In this frame, space cooling is assuming an increasing weight owing to climate change. Accordingly, this study applies a simulation- and optimization-based framework for the model predictive control (MPC) of space cooling systems. The case study is a nearly zero energy building located in Benevento – Southern Italy, Mediterranean climate – featuring an efficient air-source multi-split system for cooling. The framework is envisioned to provide optimal values of setpoint temperatures on a day-ahead planning horizon to minimize energy cost and thermal discomfort, based on weather forecasts. Accordingly, a Pareto multi-objective approach is applied considering different discomfort indicators to compare the Fanger theory with the adaptive one of ASHRAE 55. The optimization problem is solved by running a genetic algorithm – variant of NSGA II – under MATLAB® environment. The objective functions are assessed via the coupling between MATLAB® and EnergyPlus, using a validated building energy model. The multi-criteria decision-making is performed by setting a limit to discomfort to pick an optimal Pareto solution. The framework is tested addressing a typical day of the cooling season and using monitored weather data to simulate weather forecasts. Different optimal solutions are provided to fit different comfort categories. Compared to a reference control at fixed setpoint – 26 °C – the proposed solutions with similar comfort performance ensure cost savings around 28 %. Besides the proposed hypothetical implementation, the framework can be integrated in automation systems for real-time MPC. The novel contributions of this study lie in the methodology to combine MPC with different thermal comfort models as well as in the results, which provide deeps insights about the application of MPC for the space cooling of nearly zero energy buildings in a balanced climate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wy1693207859完成签到,获得积分10
2秒前
ppxx发布了新的文献求助10
3秒前
南风似潇应助科研通管家采纳,获得30
4秒前
上官若男应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
Liuzihao应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
6秒前
隐形曼青应助科研通管家采纳,获得30
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
7秒前
NexusExplorer应助科研通管家采纳,获得20
7秒前
南风似潇应助科研通管家采纳,获得30
7秒前
思源应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
大知闲闲发布了新的文献求助30
8秒前
wenlin完成签到,获得积分10
8秒前
小蘑菇应助陈龙采纳,获得200
9秒前
邓炎林发布了新的文献求助20
10秒前
11秒前
小二郎应助路人丨安采纳,获得10
12秒前
guangshuang发布了新的文献求助10
12秒前
qxx完成签到,获得积分10
12秒前
lzqlzqlzqlzqlzq完成签到,获得积分10
13秒前
云竹丶完成签到,获得积分10
15秒前
乐观的小鸡完成签到,获得积分10
16秒前
刺客发布了新的文献求助10
17秒前
19秒前
19秒前
zxm完成签到,获得积分10
20秒前
调皮汽车完成签到 ,获得积分10
22秒前
ceeray23应助沫荔采纳,获得10
23秒前
Jack完成签到,获得积分10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740036
求助须知:如何正确求助?哪些是违规求助? 3283017
关于积分的说明 10033401
捐赠科研通 2999877
什么是DOI,文献DOI怎么找? 1646203
邀请新用户注册赠送积分活动 783409
科研通“疑难数据库(出版商)”最低求助积分说明 750356