Highly accurate and efficient prediction of effective thermal conductivity of sintered silver based on deep learning method

热导率 材料科学 深度学习 热的 计算机科学 人工智能 工艺工程 机器学习 复合材料 热力学 物理 工程类
作者
Chengjie Du,Guisheng Zou,A Zhanwen,Bingzhou Lu,Bin Feng,Jinpeng Huo,Yu X,Yang Jiang,Lei Liu
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:201: 123654-123654 被引量:4
标识
DOI:10.1016/j.ijheatmasstransfer.2022.123654
摘要

• Microstructure-based FE simulation was implemented to evaluate ETC of sintered Ag. • Database was created with actual microstructures and reliable FE simulated values. • The trained CNN can predict ETC of sintered Ag both accurately and efficiently. • Prediction accuracy of CNN outperforms analytical and machine learning models. • The model trained by sintered Ag dataset can be used to predict ETC of sintered Cu. Effective thermal conductivity (ETC) of sintered Ag is an essential parameter for its die-attach application in power electronics packaging, which could vary significantly with sintering conditions. The existing ETC evaluation approaches are either of limited accuracy (analytical methods) or resource- and time-consuming (experiments and numerical simulations). In this study, deep learning method based on convolutional neural network (CNN) was first performed to predict the ETC of sintered Ag. The database was created with 6156 realistic microstructures of sintered Ag and corresponding reliable microstructural finite-element simulated ETC values (relative error of 5% with experimental results). Based on the appropriate design of CNN architecture, the trained model can accurately predict ETC values of the testing dataset samples with determination-coefficient (R 2 ) of 0.987, which significantly outperforms the conventional analytical (R 2 of 0.837) and machine learning methods (R 2 of 0.951). Besides, the prediction by CNN takes merely 0.14 s for an image, which is almost negligible. The methods presented here open a new way to achieve highly accurate and efficient prediction of ETC, which can help to prepare sintered-Ag die-attachment with desired ETC for power devices and also be applicable to investigate other effective-properties of sintered Ag.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白枫完成签到 ,获得积分0
1秒前
量子星尘发布了新的文献求助10
1秒前
今后应助开放草莓采纳,获得10
1秒前
2秒前
4秒前
季然完成签到,获得积分10
4秒前
念念发布了新的文献求助10
5秒前
6秒前
6秒前
8秒前
ZRT完成签到 ,获得积分10
9秒前
乐乐发布了新的文献求助10
11秒前
zzz发布了新的文献求助10
11秒前
深情安青应助tidongzhiwu采纳,获得10
12秒前
zhoujinzhao发布了新的文献求助10
12秒前
烟花应助sunshine采纳,获得10
13秒前
13秒前
C14yd3n完成签到,获得积分10
14秒前
insectera完成签到,获得积分10
14秒前
搜集达人应助王哈哈采纳,获得10
15秒前
默默的棒棒糖完成签到 ,获得积分10
17秒前
19秒前
21秒前
21秒前
小马甲应助超爱茶多酚采纳,获得10
21秒前
彭于晏应助平常心采纳,获得10
22秒前
tidongzhiwu发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助30
26秒前
zzz完成签到,获得积分20
26秒前
27秒前
28秒前
yang1111完成签到 ,获得积分10
28秒前
30秒前
雪白的半蕾完成签到,获得积分10
30秒前
专注的问寒应助机灵画板采纳,获得20
30秒前
32秒前
蓝天发布了新的文献求助10
34秒前
平常心发布了新的文献求助10
35秒前
35秒前
wangermazi完成签到,获得积分0
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734681
求助须知:如何正确求助?哪些是违规求助? 5355580
关于积分的说明 15327525
捐赠科研通 4879249
什么是DOI,文献DOI怎么找? 2621785
邀请新用户注册赠送积分活动 1570998
关于科研通互助平台的介绍 1527750