Highly accurate and efficient prediction of effective thermal conductivity of sintered silver based on deep learning method

热导率 材料科学 深度学习 热的 计算机科学 人工智能 工艺工程 机器学习 复合材料 热力学 物理 工程类
作者
Chengjie Du,Guisheng Zou,A Zhanwen,Bingzhou Lu,Bin Feng,Jinpeng Huo,Yu X,Yang Jiang,Lei Liu
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:201: 123654-123654 被引量:4
标识
DOI:10.1016/j.ijheatmasstransfer.2022.123654
摘要

• Microstructure-based FE simulation was implemented to evaluate ETC of sintered Ag. • Database was created with actual microstructures and reliable FE simulated values. • The trained CNN can predict ETC of sintered Ag both accurately and efficiently. • Prediction accuracy of CNN outperforms analytical and machine learning models. • The model trained by sintered Ag dataset can be used to predict ETC of sintered Cu. Effective thermal conductivity (ETC) of sintered Ag is an essential parameter for its die-attach application in power electronics packaging, which could vary significantly with sintering conditions. The existing ETC evaluation approaches are either of limited accuracy (analytical methods) or resource- and time-consuming (experiments and numerical simulations). In this study, deep learning method based on convolutional neural network (CNN) was first performed to predict the ETC of sintered Ag. The database was created with 6156 realistic microstructures of sintered Ag and corresponding reliable microstructural finite-element simulated ETC values (relative error of 5% with experimental results). Based on the appropriate design of CNN architecture, the trained model can accurately predict ETC values of the testing dataset samples with determination-coefficient (R 2 ) of 0.987, which significantly outperforms the conventional analytical (R 2 of 0.837) and machine learning methods (R 2 of 0.951). Besides, the prediction by CNN takes merely 0.14 s for an image, which is almost negligible. The methods presented here open a new way to achieve highly accurate and efficient prediction of ETC, which can help to prepare sintered-Ag die-attachment with desired ETC for power devices and also be applicable to investigate other effective-properties of sintered Ag.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lwww423完成签到,获得积分10
刚刚
我先睡了发布了新的文献求助10
1秒前
1秒前
哈喽完成签到,获得积分10
1秒前
2秒前
宗语雪完成签到,获得积分10
2秒前
乐乐应助打工科研采纳,获得10
3秒前
elang发布了新的文献求助10
4秒前
跳跳猴爱吃小松鼠完成签到,获得积分20
5秒前
嘿嘿嘿完成签到,获得积分10
5秒前
深情安青应助称心的夏彤采纳,获得10
6秒前
7秒前
8秒前
随安发布了新的文献求助10
8秒前
钱来完成签到,获得积分10
10秒前
不甜完成签到,获得积分10
11秒前
12秒前
123发布了新的文献求助10
13秒前
刘大大发布了新的文献求助10
13秒前
15秒前
奥米希完成签到,获得积分10
18秒前
18秒前
20秒前
研友_VZGvVn发布了新的文献求助10
20秒前
陈椅子的求学完成签到,获得积分10
21秒前
随安完成签到,获得积分10
21秒前
命运线完成签到,获得积分10
21秒前
22秒前
山城小肘子完成签到,获得积分10
23秒前
汉堡包应助shanshanlaichi采纳,获得10
24秒前
可乐发布了新的文献求助10
24秒前
研友_VZGvVn完成签到,获得积分10
24秒前
旺仔Mario完成签到,获得积分10
25秒前
25秒前
栗子完成签到,获得积分10
25秒前
斯文败类应助哈哈哈采纳,获得10
26秒前
wwb完成签到,获得积分10
27秒前
打工科研发布了新的文献求助10
28秒前
结实的德地完成签到,获得积分10
30秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993