Childhood Leukemia Classification via Information Bottleneck Enhanced Hierarchical Multi-Instance Learning

瓶颈 计算机科学 人工智能 概化理论 机器学习 一般化 任务(项目管理) 白血病 模式识别(心理学) 数据挖掘 医学 数学 数学分析 统计 管理 内科学 经济 嵌入式系统
作者
Zeyu Gao,Anyu Mao,Kefei Wu,Yang Li,Liebin Zhao,Xianli Zhang,Jialun Wu,Lisha Yu,Chao Xing,Tieliang Gong,Yefeng Zheng,Deyu Meng,Min Zhou,Chen Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2348-2359 被引量:13
标识
DOI:10.1109/tmi.2023.3248559
摘要

Leukemia classification relies on a detailed cytomorphological examination of Bone Marrow (BM) smear. However, applying existing deep-learning methods to it is facing two significant limitations. Firstly, these methods require large-scale datasets with expert annotations at the cell level for good results and typically suffer from poor generalization. Secondly, they simply treat the BM cytomorphological examination as a multi-class cell classification task, thus failing to exploit the correlation among leukemia subtypes over different hierarchies. Therefore, BM cytomorphological estimation as a time-consuming and repetitive process still needs to be done manually by experienced cytologists. Recently, Multi-Instance Learning (MIL) has achieved much progress in data-efficient medical image processing, which only requires patient-level labels (which can be extracted from the clinical reports). In this paper, we propose a hierarchical MIL framework and equip it with Information Bottleneck (IB) to tackle the above limitations. First, to handle the patient-level label, our hierarchical MIL framework uses attention-based learning to identify cells with high diagnostic values for leukemia classification in different hierarchies. Then, following the information bottleneck principle, we propose a hierarchical IB to constrain and refine the representations of different hierarchies for better accuracy and generalization. By applying our framework to a large-scale childhood acute leukemia dataset with corresponding BM smear images and clinical reports, we show that it can identify diagnostic-related cells without the need for cell-level annotations and outperforms other comparison methods. Furthermore, the evaluation conducted on an independent test cohort demonstrates the high generalizability of our framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎土土发布了新的文献求助50
1秒前
1秒前
大抽是谁发布了新的文献求助10
2秒前
2秒前
李健的小迷弟应助公茂源采纳,获得30
2秒前
失眠的凝雁完成签到,获得积分10
2秒前
科研通AI5应助赖道之采纳,获得10
2秒前
Menand完成签到,获得积分10
3秒前
学者发布了新的文献求助10
3秒前
清新完成签到,获得积分10
3秒前
陶弈衡完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
愉快盼曼发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
nemo发布了新的文献求助10
9秒前
学术蝗虫完成签到,获得积分10
9秒前
justin完成签到,获得积分10
10秒前
西瓜啵啵完成签到,获得积分10
12秒前
小周完成签到,获得积分10
12秒前
Louki完成签到 ,获得积分10
12秒前
温暖的颜演完成签到 ,获得积分10
13秒前
yudandan@CJLU发布了新的文献求助10
14秒前
科研小民工应助_呱_采纳,获得50
14秒前
愉快盼曼完成签到,获得积分20
14秒前
研友_VZG7GZ应助小狗同志006采纳,获得10
15秒前
123完成签到,获得积分10
15秒前
13679165979发布了新的文献求助10
16秒前
温暖的钻石完成签到,获得积分10
16秒前
科研通AI5应助赖道之采纳,获得10
16秒前
17秒前
苏卿应助Eric采纳,获得10
17秒前
思源应助hhzz采纳,获得10
18秒前
红红完成签到,获得积分10
21秒前
瑶一瑶发布了新的文献求助10
21秒前
NexusExplorer应助刘鹏宇采纳,获得10
21秒前
roselau完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808