Childhood Leukemia Classification via Information Bottleneck Enhanced Hierarchical Multi-Instance Learning

瓶颈 计算机科学 人工智能 概化理论 机器学习 一般化 任务(项目管理) 白血病 模式识别(心理学) 数据挖掘 医学 数学 经济 嵌入式系统 管理 数学分析 内科学 统计
作者
Zeyu Gao,Anyu Mao,Kefei Wu,Yang Li,Liebin Zhao,Xianli Zhang,Jialun Wu,Lisha Yu,Chao Xing,Tieliang Gong,Yefeng Zheng,Deyu Meng,Min Zhou,Chen Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2348-2359 被引量:13
标识
DOI:10.1109/tmi.2023.3248559
摘要

Leukemia classification relies on a detailed cytomorphological examination of Bone Marrow (BM) smear. However, applying existing deep-learning methods to it is facing two significant limitations. Firstly, these methods require large-scale datasets with expert annotations at the cell level for good results and typically suffer from poor generalization. Secondly, they simply treat the BM cytomorphological examination as a multi-class cell classification task, thus failing to exploit the correlation among leukemia subtypes over different hierarchies. Therefore, BM cytomorphological estimation as a time-consuming and repetitive process still needs to be done manually by experienced cytologists. Recently, Multi-Instance Learning (MIL) has achieved much progress in data-efficient medical image processing, which only requires patient-level labels (which can be extracted from the clinical reports). In this paper, we propose a hierarchical MIL framework and equip it with Information Bottleneck (IB) to tackle the above limitations. First, to handle the patient-level label, our hierarchical MIL framework uses attention-based learning to identify cells with high diagnostic values for leukemia classification in different hierarchies. Then, following the information bottleneck principle, we propose a hierarchical IB to constrain and refine the representations of different hierarchies for better accuracy and generalization. By applying our framework to a large-scale childhood acute leukemia dataset with corresponding BM smear images and clinical reports, we show that it can identify diagnostic-related cells without the need for cell-level annotations and outperforms other comparison methods. Furthermore, the evaluation conducted on an independent test cohort demonstrates the high generalizability of our framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
Ming完成签到,获得积分10
5秒前
LEMONS应助山丘采纳,获得10
6秒前
7秒前
7秒前
木子发布了新的文献求助10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得20
8秒前
yznfly应助科研通管家采纳,获得30
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
herococa应助科研通管家采纳,获得10
9秒前
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
柯一一应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
炸鱼饼完成签到,获得积分10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
王延杰完成签到,获得积分10
10秒前
丹丹完成签到 ,获得积分10
11秒前
党文英发布了新的文献求助30
11秒前
量子星尘发布了新的文献求助10
12秒前
ziming313发布了新的文献求助10
12秒前
小苗儿完成签到,获得积分10
14秒前
15秒前
15秒前
li发布了新的文献求助20
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502587
关于积分的说明 11108917
捐赠科研通 3233359
什么是DOI,文献DOI怎么找? 1787265
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122