拉曼光谱
碳水化合物代谢
新陈代谢
化学
葡萄糖摄取
生物物理学
生物化学
内分泌学
生物
胰岛素
光学
物理
作者
Anna Pieczara,Aleksandra Borek-Dorosz,Szymon Buda,William J. Tipping,Duncan Graham,Robert Pawlowski,Jacek Mlynarski,Malgorzata Baranska
标识
DOI:10.1016/j.bios.2023.115234
摘要
A relatively new approach to subcellular research is Raman microscopy with the application of sensors called Raman probes. This paper describes the use of the sensitive and specific Raman probe, 3-O-propargyl-d-glucose (3-OPG), to track metabolic changes in endothelial cells (ECs). ECs play a significant role in a healthy and dysfunctional state, the latter is correlated with a range of lifestyle diseases, particularly with cardiovascular disorders. The metabolism and glucose uptake may reflect the physiopathological conditions and cell activity correlated with energy utilization. To study metabolic changes at the subcellular level the glucose analogue, 3-OPG was used, which shows a characteristic and intense Raman band at 2124 cm-1.3-OPG was applied as a sensor to track both, its accumulation in live and fixed ECs and then metabolism in normal and inflamed ECs, by employing two spectroscopic techniques, i.e. spontaneous and stimulated Raman scattering microscopies. The results indicate that 3-OPG is a sensitive sensor to follow glucose metabolism, manifested by the Raman band of 1602 cm-1. The 1602 cm-1 band has been called the "Raman spectroscopic signature of life" in the cell literature, and here we demonstrate that it is attributed to glucose metabolites. Additionally, we have shown that glucose metabolism and its uptake are slowed down in the cellular inflammation. We showed that Raman spectroscopy can be classified as metabolomics, and its uniqueness lies in the fact that it allows the analysis of the processes of a single living cell. Gaining further knowledge on metabolic changes in the endothelium, especially in pathological conditions, may help in identifying markers of cellular dysfunction, and more broadly in cell phenotyping, better understanding of the mechanism of disease development and searching for new treatments.
科研通智能强力驱动
Strongly Powered by AbleSci AI