单线态氧
光动力疗法
激光器
电磁线圈
纳米技术
材料科学
光化学
计算机科学
光电子学
化学
氧气
光学
物理
电气工程
工程类
有机化学
作者
S. J. Davis,Y. Zhao,T. C. Yu,E. V. Maytin,S. Anand,Tayyaba Hasan,B. W. Pogue
标识
DOI:10.1021/acs.jpcb.2c07330
摘要
Translation of experimental techniques from one scientific discipline to another is often difficult but rewarding. Knowledge gained from the new area can lead to long lasting and fruitful collaborations with concomitant development of new ideas and studies. In this Review Article, we describe how early work on the chemically pumped atomic iodine laser (COIL) led to the development of a key diagnostic for a promising cancer treatment known as photodynamic therapy (PDT). The highly metastable excited state of molecular oxygen, a1Δg, also known as singlet oxygen, is the link between these disparate fields. It powers the COIL laser and is the active species that kills cancer cells during PDT. We describe the fundamentals of both COIL and PDT and trace the development path of an ultrasensitive dosimeter for singlet oxygen. The path from COIL lasers to cancer research was relatively long and required medical and engineering expertise from numerous collaborations. As we show below, the knowledge gained in the COIL research, combined with these extensive collaborations, has resulted in our being able to show a strong correlation between cancer cell death and the singlet oxygen measured during PDT treatments of mice. This progress is a key step in the eventual development of a singlet oxygen dosimeter that could be used to guide PDT treatments and improve outcomes.
科研通智能强力驱动
Strongly Powered by AbleSci AI