A sub-region Unet for weak defects segmentation with global information and mask-aware loss

计算机科学 过度拟合 分割 人工智能 噪音(视频) 深度学习 模式识别(心理学) 空间分析 特征(语言学) 干扰(通信) 计算机视觉 图像(数学) 人工神经网络 频道(广播) 遥感 地质学 哲学 语言学 计算机网络
作者
Wenbin Zhu,Rui Liang,Jiangxin Yang,Yanlong Cao,Guizhong Fu,Yanpeng Cao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:122: 106011-106011 被引量:19
标识
DOI:10.1016/j.engappai.2023.106011
摘要

In recent years, diverse detection methods have been proposed to achieve highly accurate image segmentation. However, low contrast and background noise interference still pose challenges to defect detection. Existing deep learning-based methods for defect detection mostly learn rich features on the whole image. This can lead to overfitting as the parameters get bigger, and it also loses the spatial connection. In order to solve this problem, we suggest a network based on spatial sub-region feature extraction and mask-aware loss that can detect metal surface defects. In this network framework, we obtain the contextual information of each region through two streams: one branch encodes the spatial sub-region information and reduces the effect of geometric and illumination deformation under u-shape architecture. A skip-connected structure in another stream is designed to learn global information and compensate for boundary features. Next, we propose a mask-aware loss to reduce background noise interference further. Finally, we validate the effectiveness of our method on two challenging datasets, reaching 88.45% and 79.16% on the NEU-Seg and USB-Seg datasets, respectively. Also, our model is only 5.48 MB, and can achieve 172 fps for processing images with 200 × 200 size defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
cute完成签到,获得积分10
1秒前
阿楷发布了新的文献求助10
1秒前
2秒前
开朗芸完成签到,获得积分10
4秒前
追寻松完成签到,获得积分20
5秒前
fzzf发布了新的文献求助10
6秒前
开朗芸发布了新的文献求助10
6秒前
hdblk发布了新的文献求助10
8秒前
珺儿完成签到,获得积分10
8秒前
8秒前
yongnamhui发布了新的文献求助100
10秒前
11秒前
12秒前
烟花应助大力的迎松采纳,获得10
14秒前
zzz完成签到,获得积分10
15秒前
16秒前
GodZ发布了新的文献求助10
17秒前
小小鱼完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
糟糕的立辉完成签到,获得积分10
21秒前
沉静楷瑞完成签到,获得积分10
21秒前
22秒前
大力的迎松完成签到,获得积分20
23秒前
12发布了新的文献求助10
24秒前
BadBoy发布了新的文献求助10
24秒前
25秒前
25秒前
hdblk完成签到,获得积分10
26秒前
lxptsd完成签到,获得积分10
27秒前
28秒前
所所应助茶弥采纳,获得10
28秒前
29秒前
hhyy完成签到 ,获得积分10
29秒前
wennn完成签到 ,获得积分10
31秒前
aaaaaa发布了新的文献求助10
31秒前
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962605
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141892
捐赠科研通 3241353
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803501