Unbalanced amygdala communication in major depressive disorder

扁桃形结构 重性抑郁障碍 默认模式网络 功能磁共振成像 心理学 壳核 神经科学 静息状态功能磁共振成像 联想(心理学) 相关性 临床心理学 心理治疗师 几何学 数学
作者
Xiaotong Wen,Bukui Han,Huanhuan Li,Fengyu Dou,Guodong Wei,Gangqiang Hou,Xia Wu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:329: 192-206 被引量:2
标识
DOI:10.1016/j.jad.2023.02.091
摘要

Previous studies suggested an association between functional alteration of the amygdala and typical major depressive disorder (MDD) symptoms. Examining whether and how the interaction between the amygdala and regions/functional networks is altered in patients with MDD is important for understanding its neural basis.Resting-state functional magnetic resonance imaging data were recorded from 67 patients with MDD and 74 age- and sex-matched healthy controls (HCs). A framework for large-scale network analysis based on seed mappings of amygdala sub-regions, using a multi-connectivity-indicator strategy (cross-correlation, total interdependencies (TI), Granger causality (GC), and machine learning), was employed. Multiple indicators were compared between the two groups. The altered indicators were ranked in a supporting-vector machine-based procedure and associated with the Hamilton Rating Scale for Depression scores.The amygdala connectivity with the default mode network and ventral attention network regions was enhanced and that with the somatomotor network, dorsal frontoparietal network, and putamen regions in patients with MDD was reduced. The machine learning analysis highlighted altered indicators that were most conducive to the classification between the two groups.Most patients with MDD received different pharmacological treatments. It is difficult to illustrate the medication state's effect on the alteration model because of its complex situation.The results indicate an unbalanced interaction model between the amygdala and functional networks and regions essential for various emotional and cognitive functions. The model can help explain potential aberrancy in the neural mechanisms that underlie the functional impairments observed across various domains in patients with MDD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吴天姿完成签到,获得积分10
1秒前
研友_8WMxKn发布了新的文献求助10
1秒前
李健的小迷弟应助Joyan采纳,获得10
2秒前
3秒前
3秒前
yue完成签到,获得积分10
3秒前
3秒前
帅气的藏鸟完成签到,获得积分10
3秒前
orixero应助杨潇丶丶采纳,获得10
4秒前
4秒前
4秒前
支筮发布了新的文献求助10
4秒前
linciko发布了新的文献求助10
4秒前
xj发布了新的文献求助10
4秒前
Owen应助绵绵采纳,获得10
5秒前
华仔应助澈哩子采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
ygd发布了新的文献求助10
7秒前
仁爱曼冬发布了新的文献求助10
7秒前
SciGPT应助流萤采纳,获得10
8秒前
Yidie完成签到,获得积分10
8秒前
科研通AI6应助LuxuryQ采纳,获得10
8秒前
进击的PhD应助linciko采纳,获得20
8秒前
8秒前
9秒前
123完成签到,获得积分20
9秒前
科研三井泽完成签到,获得积分10
9秒前
9秒前
喜悦寄风发布了新的文献求助10
9秒前
ggggg666666完成签到,获得积分10
9秒前
124完成签到,获得积分10
9秒前
执着的枫叶完成签到,获得积分10
9秒前
10秒前
万能图书馆应助小玲玲采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667995
求助须知:如何正确求助?哪些是违规求助? 4888874
关于积分的说明 15122780
捐赠科研通 4826840
什么是DOI,文献DOI怎么找? 2584376
邀请新用户注册赠送积分活动 1538211
关于科研通互助平台的介绍 1496526