Unbalanced amygdala communication in major depressive disorder

扁桃形结构 重性抑郁障碍 默认模式网络 功能磁共振成像 心理学 壳核 神经科学 静息状态功能磁共振成像 联想(心理学) 相关性 临床心理学 心理治疗师 几何学 数学
作者
Xiaotong Wen,Bukui Han,Huanhuan Li,Fengyu Dou,Guodong Wei,Gangqiang Hou,Xia Wu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:329: 192-206 被引量:2
标识
DOI:10.1016/j.jad.2023.02.091
摘要

Previous studies suggested an association between functional alteration of the amygdala and typical major depressive disorder (MDD) symptoms. Examining whether and how the interaction between the amygdala and regions/functional networks is altered in patients with MDD is important for understanding its neural basis.Resting-state functional magnetic resonance imaging data were recorded from 67 patients with MDD and 74 age- and sex-matched healthy controls (HCs). A framework for large-scale network analysis based on seed mappings of amygdala sub-regions, using a multi-connectivity-indicator strategy (cross-correlation, total interdependencies (TI), Granger causality (GC), and machine learning), was employed. Multiple indicators were compared between the two groups. The altered indicators were ranked in a supporting-vector machine-based procedure and associated with the Hamilton Rating Scale for Depression scores.The amygdala connectivity with the default mode network and ventral attention network regions was enhanced and that with the somatomotor network, dorsal frontoparietal network, and putamen regions in patients with MDD was reduced. The machine learning analysis highlighted altered indicators that were most conducive to the classification between the two groups.Most patients with MDD received different pharmacological treatments. It is difficult to illustrate the medication state's effect on the alteration model because of its complex situation.The results indicate an unbalanced interaction model between the amygdala and functional networks and regions essential for various emotional and cognitive functions. The model can help explain potential aberrancy in the neural mechanisms that underlie the functional impairments observed across various domains in patients with MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刘爱实验完成签到,获得积分10
刚刚
咖啡豆应助科研通管家采纳,获得10
1秒前
1秒前
咖啡豆应助科研通管家采纳,获得10
1秒前
小鹏哥完成签到,获得积分10
1秒前
我爱学习完成签到 ,获得积分10
2秒前
不配.应助sp采纳,获得10
6秒前
科目三应助墨竹采纳,获得10
8秒前
我是老大应助小福子采纳,获得10
8秒前
大头完成签到 ,获得积分10
10秒前
11秒前
12秒前
13秒前
zdz完成签到,获得积分10
16秒前
16秒前
AZX加油完成签到,获得积分10
17秒前
freeaway完成签到,获得积分10
18秒前
18秒前
sllytn应助NN采纳,获得30
19秒前
MoXian完成签到,获得积分10
19秒前
安静的瑾瑜完成签到 ,获得积分10
20秒前
JhShang完成签到 ,获得积分10
23秒前
24秒前
24秒前
wulixin完成签到,获得积分10
25秒前
26秒前
疯惊发布了新的文献求助30
27秒前
sam发布了新的文献求助30
27秒前
开心应助南瓜汤采纳,获得10
27秒前
Frisk12sfs发布了新的文献求助10
28秒前
深情安青应助zane采纳,获得10
32秒前
科研通AI2S应助小眼儿采纳,获得10
32秒前
陈小鱼干发布了新的文献求助10
33秒前
Frisk12sfs完成签到,获得积分10
33秒前
麻雀发布了新的文献求助10
33秒前
华hgger发布了新的文献求助10
34秒前
ZSQ完成签到 ,获得积分10
34秒前
znchick完成签到,获得积分10
36秒前
Monica完成签到,获得积分10
37秒前
Eason完成签到,获得积分10
40秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791116
关于积分的说明 7798129
捐赠科研通 2447583
什么是DOI,文献DOI怎么找? 1301980
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194