Unbalanced amygdala communication in major depressive disorder

扁桃形结构 重性抑郁障碍 默认模式网络 功能磁共振成像 心理学 壳核 神经科学 静息状态功能磁共振成像 联想(心理学) 相关性 临床心理学 心理治疗师 几何学 数学
作者
Xiaotong Wen,Bukui Han,Huanhuan Li,Fengyu Dou,Guodong Wei,Gangqiang Hou,Xia Wu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:329: 192-206 被引量:2
标识
DOI:10.1016/j.jad.2023.02.091
摘要

Previous studies suggested an association between functional alteration of the amygdala and typical major depressive disorder (MDD) symptoms. Examining whether and how the interaction between the amygdala and regions/functional networks is altered in patients with MDD is important for understanding its neural basis.Resting-state functional magnetic resonance imaging data were recorded from 67 patients with MDD and 74 age- and sex-matched healthy controls (HCs). A framework for large-scale network analysis based on seed mappings of amygdala sub-regions, using a multi-connectivity-indicator strategy (cross-correlation, total interdependencies (TI), Granger causality (GC), and machine learning), was employed. Multiple indicators were compared between the two groups. The altered indicators were ranked in a supporting-vector machine-based procedure and associated with the Hamilton Rating Scale for Depression scores.The amygdala connectivity with the default mode network and ventral attention network regions was enhanced and that with the somatomotor network, dorsal frontoparietal network, and putamen regions in patients with MDD was reduced. The machine learning analysis highlighted altered indicators that were most conducive to the classification between the two groups.Most patients with MDD received different pharmacological treatments. It is difficult to illustrate the medication state's effect on the alteration model because of its complex situation.The results indicate an unbalanced interaction model between the amygdala and functional networks and regions essential for various emotional and cognitive functions. The model can help explain potential aberrancy in the neural mechanisms that underlie the functional impairments observed across various domains in patients with MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mnm发布了新的文献求助10
刚刚
柔弱凡松发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
SHDeathlock发布了新的文献求助50
1秒前
乐乐应助hu970采纳,获得10
1秒前
单薄白薇完成签到,获得积分10
3秒前
陈杰发布了新的文献求助10
3秒前
3秒前
3秒前
小张张发布了新的文献求助10
3秒前
乐乐应助YAN采纳,获得10
4秒前
迷惘墨香完成签到 ,获得积分10
5秒前
5秒前
Cynthia发布了新的文献求助30
5秒前
共享精神应助shenyanlei采纳,获得10
6秒前
wwww发布了新的文献求助10
6秒前
蔡菜菜完成签到,获得积分10
7秒前
852应助小余采纳,获得10
7秒前
饱满秋完成签到,获得积分10
8秒前
夜白发布了新的文献求助20
8秒前
搜集达人应助明月清风采纳,获得10
8秒前
希夷发布了新的文献求助10
9秒前
9秒前
爆米花应助通~采纳,获得10
9秒前
苏靖完成签到,获得积分10
9秒前
luoyutian发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
科研通AI5应助猪猪采纳,获得10
10秒前
10秒前
海绵体宝宝应助an采纳,获得10
11秒前
wwww完成签到,获得积分10
11秒前
11秒前
桐桐应助柔弱凡松采纳,获得10
11秒前
爆米花应助丶呆久自然萌采纳,获得10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762