Investigating the impact of spectral data pre-processing to assess honey botanical origin through Fourier transform infrared spectroscopy (FTIR)

化学计量学 傅里叶变换红外光谱 数据处理 傅里叶变换 人工智能 模式识别(心理学) 数学 计算机科学 生物系统 机器学习 光学 物理 数据库 生物 数学分析
作者
Aristeidis S. Tsagkaris,Kamila Bechyňská,D.D. Ntakoulas,Ioannis N. Pasias,Philipp Weller,Charalampos Proestos,Jana Hajšlová
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:119: 105276-105276 被引量:15
标识
DOI:10.1016/j.jfca.2023.105276
摘要

Honey botanical origin is a parameter affecting its market price as certain origins are related to special organoleptic properties or potential health benefits attracting consumers’ attention. However, identifying honey botanical origin is a challenging task commonly requiring extensive high-end analysis. In this study, to address this challenge, a rapid and non-destructive attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) method was developed and special focus was paid on the spectral data pre-processing and its effect on the performance of chemometric models. Twenty-two different pre-processing methods were tested, namely, scatter correction methods, spectral derivation methods and their combinations. In each occasion, both supervised and non-supervised tools were implemented and the cross-validation parameters were used as an indicator on the efficient projection of fifty-one (n = 51) honey samples originating from 5 different botanical origins (blossom, honeydew, cotton, thyme, citrus). Importantly, combining multiplicative scatter correction followed by Savitzky-Golay first derivation is suggested as the most efficient data pre-processing method. Eventually, this data pre-processing was applied in binary models acquiring excellent recognition (87–100%) and prediction (81–100%) ability. In conclusion, the presented method set light on the undermined effect of spectral data pre-processing before the application of advanced chemometrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aiz应助兴奋的水池采纳,获得10
刚刚
研友_VZG7GZ应助rudjs采纳,获得10
刚刚
1秒前
顾矜应助裴裴采纳,获得10
1秒前
3秒前
qrr发布了新的文献求助10
4秒前
4秒前
完美世界应助有缘采纳,获得10
5秒前
俊逸冬日发布了新的文献求助10
5秒前
5秒前
5秒前
华仔应助健壮凡桃采纳,获得10
5秒前
6秒前
英俊的铭应助11采纳,获得10
6秒前
6秒前
柚子完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
8秒前
善学以致用应助YH采纳,获得10
8秒前
Lemon完成签到 ,获得积分10
9秒前
shhoing应助在河之洲采纳,获得10
9秒前
9秒前
善良善愁发布了新的文献求助10
9秒前
善学以致用应助无语采纳,获得10
9秒前
huaming发布了新的文献求助20
10秒前
10秒前
10秒前
10秒前
关关发布了新的文献求助10
10秒前
莫莫完成签到,获得积分10
11秒前
柚子发布了新的文献求助10
11秒前
nerd发布了新的文献求助10
11秒前
专注的十八完成签到,获得积分10
11秒前
洗澡记得戴浴帽完成签到,获得积分10
11秒前
科研通AI6应助装货采纳,获得10
11秒前
健壮的以莲完成签到,获得积分10
12秒前
12秒前
12秒前
14秒前
Doctor_jie完成签到 ,获得积分10
15秒前
yjx关注了科研通微信公众号
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526777
求助须知:如何正确求助?哪些是违规求助? 4616768
关于积分的说明 14555797
捐赠科研通 4555282
什么是DOI,文献DOI怎么找? 2496282
邀请新用户注册赠送积分活动 1476561
关于科研通互助平台的介绍 1448126