Investigating the impact of spectral data pre-processing to assess honey botanical origin through Fourier transform infrared spectroscopy (FTIR)

化学计量学 傅里叶变换红外光谱 数据处理 傅里叶变换 人工智能 模式识别(心理学) 数学 计算机科学 生物系统 机器学习 光学 物理 数据库 生物 数学分析
作者
Aristeidis S. Tsagkaris,Kamila Bechyňská,D.D. Ntakoulas,Ioannis N. Pasias,Philipp Weller,Charalampos Proestos,Jana Hajšlová
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:119: 105276-105276 被引量:15
标识
DOI:10.1016/j.jfca.2023.105276
摘要

Honey botanical origin is a parameter affecting its market price as certain origins are related to special organoleptic properties or potential health benefits attracting consumers’ attention. However, identifying honey botanical origin is a challenging task commonly requiring extensive high-end analysis. In this study, to address this challenge, a rapid and non-destructive attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) method was developed and special focus was paid on the spectral data pre-processing and its effect on the performance of chemometric models. Twenty-two different pre-processing methods were tested, namely, scatter correction methods, spectral derivation methods and their combinations. In each occasion, both supervised and non-supervised tools were implemented and the cross-validation parameters were used as an indicator on the efficient projection of fifty-one (n = 51) honey samples originating from 5 different botanical origins (blossom, honeydew, cotton, thyme, citrus). Importantly, combining multiplicative scatter correction followed by Savitzky-Golay first derivation is suggested as the most efficient data pre-processing method. Eventually, this data pre-processing was applied in binary models acquiring excellent recognition (87–100%) and prediction (81–100%) ability. In conclusion, the presented method set light on the undermined effect of spectral data pre-processing before the application of advanced chemometrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhou完成签到,获得积分10
1秒前
愉快天亦完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
英姑应助旁白采纳,获得10
4秒前
alixy完成签到,获得积分10
5秒前
setfgrew完成签到,获得积分10
5秒前
bobo完成签到 ,获得积分10
6秒前
YY完成签到,获得积分20
6秒前
严昌发布了新的文献求助10
7秒前
samchoi107发布了新的文献求助10
7秒前
xx发布了新的文献求助10
7秒前
HC发布了新的文献求助10
8秒前
10秒前
桐桐应助raycee采纳,获得10
10秒前
全齐完成签到,获得积分10
11秒前
11秒前
顾矜应助陈皮糖不酸采纳,获得10
11秒前
12秒前
14秒前
Ashley完成签到,获得积分10
14秒前
xx完成签到,获得积分10
15秒前
MXY发布了新的文献求助10
15秒前
科研通AI2S应助严昌采纳,获得10
16秒前
懵懂的灭男完成签到,获得积分10
20秒前
21秒前
__发布了新的文献求助10
21秒前
21秒前
22秒前
雨下完成签到,获得积分20
23秒前
23秒前
MXY完成签到,获得积分10
23秒前
伶俐哈密瓜关注了科研通微信公众号
23秒前
天人完成签到 ,获得积分10
23秒前
24秒前
啾比文发布了新的文献求助10
24秒前
科目三应助追寻的雁菡采纳,获得10
24秒前
26秒前
lankeren完成签到,获得积分10
26秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129063
求助须知:如何正确求助?哪些是违规求助? 2779896
关于积分的说明 7745143
捐赠科研通 2435056
什么是DOI,文献DOI怎么找? 1293897
科研通“疑难数据库(出版商)”最低求助积分说明 623471
版权声明 600542