An efficient and robust Phonocardiography (PCG)-based Valvular Heart Diseases (VHD) detection framework using Vision Transformer (ViT)

计算机科学 人工智能 变压器 瓣膜性心脏病 计算机视觉 心脏病学 内科学 医学 工程类 电气工程 电压
作者
Sonain Jamil,Arunabha M. Roy
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:158: 106734-106734 被引量:52
标识
DOI:10.1016/j.compbiomed.2023.106734
摘要

Valvular heart diseases (VHDs) are one of the dominant causes of cardiovascular abnormalities that have been associated with high mortality rates globally. Rapid and accurate diagnosis of the early stage of VHD based on cardiac phonocardiogram (PCG) signal is critical that allows for optimum medication and reduction of mortality rate. To this end, the current study proposes novel deep learning (DL)-based high-performance VHD detection frameworks that are relatively simpler in terms of network structures, yet effective for accurately detecting multiple VHDs. We present three different frameworks considering both 1D and 2D PCG raw signals. For 1D PCG, Mel frequency cepstral coefficients (MFCC) and linear prediction cepstral coefficients (LPCC) features, whereas, for 2D PCG, various deep convolutional neural networks (D-CNNs) features are extracted. Additionally, nature/bio-inspired algorithms (NIA/BIA) including particle swarm optimization (PSO) and genetic algorithm (GA) have been utilized for automatic and efficient feature selection directly from the raw PCG signal. To further improve the performance of the classifier, vision transformer (ViT) has been implemented levering the self-attention mechanism on the time frequency representation (TFR) of 2D PCG signal. Our extensive study presents a comparative performance analysis and the scope of enhancement for the combination of different descriptors, classifiers, and feature selection algorithms. Among all classifiers, ViT provides the best performance by achieving mean average accuracy Acc of 99.90 % and F1-score of 99.95 % outperforming current state-of-the-art VHD classification models. The present research provides a robust and efficient DL-based end-to-end PCG signal classification framework for designing a automated high-performance VHD diagnosis system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木木完成签到,获得积分10
1秒前
鲤鱼水壶完成签到,获得积分10
1秒前
KHromance发布了新的文献求助10
2秒前
连长完成签到,获得积分10
2秒前
2秒前
ppp发布了新的文献求助10
2秒前
3秒前
3秒前
退而求其次完成签到,获得积分10
4秒前
与可发布了新的文献求助10
5秒前
6秒前
太阳完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
CZLhaust发布了新的文献求助10
7秒前
敢敢发布了新的文献求助10
7秒前
khjia完成签到,获得积分10
7秒前
jack完成签到,获得积分10
8秒前
9秒前
浮浮世世发布了新的文献求助50
9秒前
9秒前
boomboom发布了新的文献求助10
9秒前
ppp完成签到,获得积分10
10秒前
CZLhaust完成签到,获得积分10
11秒前
所所应助Ronnie采纳,获得10
12秒前
华仔应助太阳采纳,获得10
13秒前
浮浮世世完成签到,获得积分10
13秒前
13秒前
14秒前
完美世界应助开心的桔子采纳,获得10
14秒前
wanci应助Ning采纳,获得10
15秒前
15秒前
16秒前
大个应助羽毛采纳,获得10
17秒前
乐乐应助qjx采纳,获得10
18秒前
19秒前
风语发布了新的文献求助10
19秒前
20秒前
易昕关注了科研通微信公众号
20秒前
CipherSage应助galaxy采纳,获得10
20秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951249
求助须知:如何正确求助?哪些是违规求助? 3496668
关于积分的说明 11083529
捐赠科研通 3227087
什么是DOI,文献DOI怎么找? 1784228
邀请新用户注册赠送积分活动 868269
科研通“疑难数据库(出版商)”最低求助积分说明 801095