Deep continual hashing with gradient-aware memory for cross-modal retrieval

散列函数 计算机科学 人工智能 二进制代码 动态完美哈希 理论计算机科学 通用哈希 二进制数 哈希表 双重哈希 数学 计算机安全 算术
作者
Ge Song,Xiaoyang Tan,Ming Yang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:137: 109276-109276 被引量:3
标识
DOI:10.1016/j.patcog.2022.109276
摘要

Cross-modal hashing (CMH) has become widely used for large-scale multimedia retrieval. However, most current CMH methods focus on the closed retrieval scenario, not the real-world environments, i.e., complex and changing semantics. When data containing new class objects emerge, the current CMH has to retrain the model on all history training data, not the new data, to accommodate new semantics, but the never-stop upload of data on the Internet makes this impractical. In this paper, we devise a deep hashing method called Continual Cross-Modal Hashing with Gradient Aware Memory (CCMH-GAM) for learning binary codes of multi-label cross-modal data with increasing categories. CCMH-GAM is a two-step hashing architecture, one hashing network learns to hash the increasing semantics of data, i.e., label, into the semantic codes, and other modality-specific hashing networks learn to map data into the corresponding semantic codes. Specifically, to keep the encoding ability for old semantics, a regularization based on accumulating low-storage label-code pairs is designed for the former network. For the modality-specific networks, we propose a memory construction method via approximating the full episodic gradients of all data by some exemplars and derive its fast implementation with the upper bound of approximation error. Based on this memory, we propose a gradient projection method to theoretically improve the probability of old data’s code being unchanged after updating the model. Extensive experiments on three datasets demonstrate that CCMH-GAM can continually learn hash functions and yield state-of-the-art retrieval performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
liang白开完成签到,获得积分10
1秒前
科研通AI6应助加菲猫采纳,获得10
2秒前
彭于晏应助猪猪hero采纳,获得10
3秒前
r41r32完成签到 ,获得积分10
3秒前
4秒前
Spike发布了新的文献求助10
5秒前
凌小满发布了新的文献求助60
6秒前
永字号发布了新的文献求助10
6秒前
雪白的真完成签到,获得积分20
7秒前
7秒前
风中无血发布了新的文献求助10
7秒前
刘子豪发布了新的文献求助10
7秒前
闪闪柔完成签到,获得积分10
10秒前
璐璐完成签到,获得积分10
10秒前
11秒前
11秒前
豆儿嘚小豆儿完成签到,获得积分10
12秒前
妮妮完成签到 ,获得积分10
12秒前
李园园完成签到 ,获得积分10
13秒前
赘婿应助认真手机采纳,获得10
13秒前
13秒前
wangxw发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
冷艳的纸鹤完成签到,获得积分10
14秒前
15秒前
15秒前
18秒前
科目三应助害羞采萱采纳,获得10
18秒前
小二郎应助风中无血采纳,获得10
18秒前
可爱的函函应助丁真真采纳,获得10
19秒前
20秒前
20秒前
喜多发布了新的文献求助10
21秒前
李爱国应助Windycityguy采纳,获得10
21秒前
Jasper应助暴躁的咖啡采纳,获得10
21秒前
林夕发布了新的文献求助20
22秒前
美好蝴蝶发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465399
求助须知:如何正确求助?哪些是违规求助? 4569719
关于积分的说明 14320701
捐赠科研通 4496152
什么是DOI,文献DOI怎么找? 2463156
邀请新用户注册赠送积分活动 1452110
关于科研通互助平台的介绍 1427270