Observer-Based Consensus for Multi-Agent Systems With Semi-Markovian Jumping Via Adaptive Event-Triggered SMC

控制理论(社会学) 可达性 计算机科学 马尔可夫过程 多智能体系统 有界函数 观察员(物理) 数学 控制(管理) 理论计算机科学 数学分析 统计 物理 量子力学 人工智能
作者
Jiayi Cai,Jingyi Wang,Jianwen Feng,Guanrong Chen,Yi Zhao
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 1736-1751 被引量:14
标识
DOI:10.1109/tnse.2023.3234168
摘要

This paper investigates the observer-based event-triggered adaptive sliding mode control (SMC) problem of the semi-Markovian jumping multi-agent systems (S-MJMASs) with completely unknown and uncertain bounded transfer probabilities (TPs). As impacted by the limited bandwidth of the communication network between individual agents and the unmeasurable state information of the systems, an innovative observer based distributed event-triggered adaptive mechanism (ETAM) is proposed, in which the global information of the network is not used and the triggering threshold is dynamically regulated by the adaptive law to reduce excessive network communication. Additionally, since delays exist between the event trigger and the zero-order holder (ZOH) during data transmission in network communication systems, as well as the semi-Markovian jumping parameters, the uncertainty of systems is increased. In this paper, a novel integral sliding surface is constructed and its reachability and continuity in stochastic senses are guaranteed to withstand interferences. With the help of a stochastic semi-Markovian Lyapunov functional and numerous linear matrix inequalities (LMIs) approaches, certain adequate conditions are achieved to ensure that all agents in S-MJMASs can track the leader. Finally, certain numerical simulations are used to demonstrate the efficiency of the suggested theoretical conclusions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhl完成签到,获得积分10
1秒前
大模型应助轻松的雨旋采纳,获得10
1秒前
zhu完成签到,获得积分10
1秒前
ZeroL完成签到 ,获得积分0
1秒前
2秒前
2秒前
Rocky完成签到,获得积分10
2秒前
123发布了新的文献求助10
2秒前
2秒前
有一瓶完成签到,获得积分10
3秒前
称心砖头完成签到,获得积分10
3秒前
汉堡包应助小T儿采纳,获得10
4秒前
狂野书文完成签到,获得积分10
4秒前
爱静静应助otaro采纳,获得40
4秒前
camera发布了新的文献求助10
4秒前
5秒前
5秒前
Hu发布了新的文献求助10
5秒前
iu发布了新的文献求助10
5秒前
好了完成签到,获得积分10
6秒前
6秒前
怡然雨雪完成签到,获得积分10
6秒前
6秒前
科研通AI5应助李唯佳采纳,获得10
6秒前
万能图书馆应助祝雲采纳,获得10
6秒前
我爱学习完成签到 ,获得积分10
7秒前
111完成签到,获得积分10
7秒前
可乐要加冰完成签到,获得积分10
7秒前
深情安青应助郑开司09采纳,获得10
8秒前
娜行发布了新的文献求助10
8秒前
Auoroa完成签到,获得积分10
8秒前
明智之举完成签到,获得积分10
9秒前
赵赵完成签到,获得积分10
9秒前
共享精神应助lalala采纳,获得10
9秒前
Hello应助hf采纳,获得10
9秒前
9秒前
豆丁完成签到,获得积分10
10秒前
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672