An Adversarial Meta-Training Framework for Cross-Domain Few-Shot Learning

计算机科学 元学习(计算机科学) 人工智能 机器学习 一般化 对抗制 多任务学习 深度学习 任务(项目管理) 最大化 透视图(图形) 主动学习(机器学习) 领域(数学分析) 基于实例的学习 数学 数学分析 经济 微观经济学 管理
作者
Pinzhuo Tian,Shaorong Xie
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 6881-6891 被引量:10
标识
DOI:10.1109/tmm.2022.3215310
摘要

Meta-learning provides a promising way for deep learning models to efficiently learn in few-shot learning. With this capacity, many deep learning systems can be applied in many real applications. However, many existing meta-learning based few-shot learning systems suffer from vulnerable generalization when new tasks are from unseen domains (a.k.a, cross-domain few-shot learning). In this work, we consider this problem from the perspective of designing a model-agnostic meta-training framework to improve the generalization of existing meta-learning methods in cross-domain few-shot learning. In this way, compared with focusing on elaborately designing modules for a specific meta-learning model, our method is endowed with the ability to be compatible with different meta-learning models in various few-shot problems. To achieve this goal, a novel adversarial meta-training framework is proposed. The proposed framework utilizes max-min episodic iteration. In the episode of maximization, our framework focuses on how to dynamically generate appropriate pseudo tasks which benefit learning cross-domain knowledge. In the episode of minimization, our method aims to solve how to help meta-learning model learn cross-task and robust meta-knowledge. To comprehensively evaluate our framework, experiments are conducted on two few-shot learning settings, three meta-learning models, and eight datasets. These results demonstrate that our method is applicable to various meta-learning models in different few-shot learning problems. The superiority of our method is verified compared with existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangli发布了新的文献求助20
刚刚
ai科研发布了新的文献求助10
1秒前
bmdeisler发布了新的文献求助10
1秒前
2秒前
ugot发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
dongan完成签到,获得积分10
6秒前
fengyuenanche完成签到,获得积分10
6秒前
6秒前
6秒前
ACE发布了新的文献求助30
7秒前
赘婿应助猪猪侠采纳,获得10
8秒前
8秒前
靓丽宛亦完成签到 ,获得积分10
9秒前
思源应助bmdeisler采纳,获得10
9秒前
英姑应助西子阳采纳,获得10
10秒前
10秒前
ChengYonghui发布了新的文献求助10
10秒前
11秒前
少吃一口发布了新的文献求助10
11秒前
12秒前
13秒前
亦依然发布了新的文献求助10
13秒前
14秒前
所所应助ChengYonghui采纳,获得10
14秒前
SmallBamboo发布了新的文献求助10
15秒前
爱听歌曼文完成签到,获得积分10
15秒前
PXP发布了新的文献求助10
15秒前
三岁半完成签到,获得积分10
15秒前
16秒前
不奢完成签到 ,获得积分10
16秒前
16秒前
zrc发布了新的文献求助30
16秒前
16秒前
17秒前
易达发布了新的文献求助10
17秒前
时尚凝冬发布了新的文献求助10
17秒前
子车定帮完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070