亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Adversarial Meta-Training Framework for Cross-Domain Few-Shot Learning

计算机科学 元学习(计算机科学) 人工智能 机器学习 一般化 对抗制 多任务学习 深度学习 任务(项目管理) 最大化 透视图(图形) 主动学习(机器学习) 领域(数学分析) 基于实例的学习 数学分析 数学 管理 微观经济学 经济
作者
Pinzhuo Tian,Shaorong Xie
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 6881-6891 被引量:10
标识
DOI:10.1109/tmm.2022.3215310
摘要

Meta-learning provides a promising way for deep learning models to efficiently learn in few-shot learning. With this capacity, many deep learning systems can be applied in many real applications. However, many existing meta-learning based few-shot learning systems suffer from vulnerable generalization when new tasks are from unseen domains (a.k.a, cross-domain few-shot learning). In this work, we consider this problem from the perspective of designing a model-agnostic meta-training framework to improve the generalization of existing meta-learning methods in cross-domain few-shot learning. In this way, compared with focusing on elaborately designing modules for a specific meta-learning model, our method is endowed with the ability to be compatible with different meta-learning models in various few-shot problems. To achieve this goal, a novel adversarial meta-training framework is proposed. The proposed framework utilizes max-min episodic iteration. In the episode of maximization, our framework focuses on how to dynamically generate appropriate pseudo tasks which benefit learning cross-domain knowledge. In the episode of minimization, our method aims to solve how to help meta-learning model learn cross-task and robust meta-knowledge. To comprehensively evaluate our framework, experiments are conducted on two few-shot learning settings, three meta-learning models, and eight datasets. These results demonstrate that our method is applicable to various meta-learning models in different few-shot learning problems. The superiority of our method is verified compared with existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赎罪完成签到 ,获得积分10
2秒前
慕青应助Phi采纳,获得10
5秒前
梁朝伟发布了新的文献求助10
9秒前
25秒前
宝宝烤面包完成签到 ,获得积分10
30秒前
研友_VZG7GZ应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
Orange应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
orixero应助liujingyi采纳,获得10
52秒前
52秒前
Phi发布了新的文献求助10
58秒前
大个应助加湿器采纳,获得10
59秒前
赝品也烂漫完成签到,获得积分10
1分钟前
1分钟前
1分钟前
YSY完成签到,获得积分10
1分钟前
忘皆空发布了新的文献求助10
1分钟前
1分钟前
Chenly完成签到,获得积分10
1分钟前
Blessedone完成签到,获得积分20
1分钟前
1分钟前
积极的尔白完成签到 ,获得积分10
1分钟前
忧郁依霜发布了新的文献求助10
2分钟前
lingzi670完成签到,获得积分10
2分钟前
bkagyin应助六七采纳,获得10
2分钟前
2分钟前
lingzi670发布了新的文献求助10
2分钟前
2分钟前
快乐排骨汤完成签到 ,获得积分10
2分钟前
若水完成签到,获得积分10
2分钟前
2分钟前
yyy发布了新的文献求助10
2分钟前
yyy完成签到,获得积分20
2分钟前
jyy应助好好采纳,获得10
2分钟前
科研通AI2S应助ldj6670采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
shaw发布了新的文献求助10
3分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335240
求助须知:如何正确求助?哪些是违规求助? 2964478
关于积分的说明 8613836
捐赠科研通 2643346
什么是DOI,文献DOI怎么找? 1447285
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658953