HVAC control in buildings using neural network

暖通空调 解算器 能源消耗 计算机科学 控制器(灌溉) 极限学习机 控制工程 能量(信号处理) 人工神经网络 控制(管理) 人工智能 模拟 工程类 空调 机械工程 电气工程 统计 生物 程序设计语言 数学 农学
作者
A. Abida,Pascal Richter
出处
期刊:Journal of building engineering [Elsevier]
卷期号:65: 105558-105558 被引量:15
标识
DOI:10.1016/j.jobe.2022.105558
摘要

The energy consumption in buildings become the largest part of energy consumption worldwide, accounting for 40% of total global energy consumption and one third of the green house emission (Ahmed et al., Dec 2021). The optimization of building HVAC system require in many cases a thermodynamic model and mathematical solver which consumes a lot of hardware and time. However the data driven methods that presents 48% are often focusing on one type of HVAC systems (Grassi et al., May 2022). The real engineering problem is that the data driven methods are limited to specific systems and investigated for specific configurations. To overcome this problem, many machine learning solutions for optimized control data for HVAC are proposed. Those solutions are tested for real buildings in Germany. This new controller approach considers the effect of sequential inputs such as weather conditions, internal energy and time, and it consider a historical HVAC optimized data output. The investigation is done for CNN, LSTM, RNN-GRU, RNN-attention, and for each method we try to idealize the hyper-parameters and configurations. The goal of the study is to investigate the accuracy of machine learning routine on building optimization controlling and the ability to learn controlled and optimized data for different systems, to compare difference between generation of single output and multiple outputs, to decide the best inputs prepossessing, and to evaluate the extreme weather effects. This investigation proves that data control solution have limitation especially with extreme weather conditions but it can be improved by working on the pre-processing and different configurations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王立俣发布了新的文献求助10
1秒前
ding应助谨慎的花生采纳,获得10
1秒前
科研狗发布了新的文献求助10
1秒前
2秒前
超级的班发布了新的文献求助10
3秒前
李政卓完成签到,获得积分10
3秒前
星辰大海应助孙涛采纳,获得10
3秒前
4秒前
orixero应助怕黑的傲蕾采纳,获得10
4秒前
兔子发布了新的文献求助10
4秒前
邱文县完成签到,获得积分10
5秒前
5秒前
5秒前
朴实的访烟完成签到,获得积分10
5秒前
5秒前
浮游应助laowaikuan采纳,获得10
6秒前
布公发布了新的文献求助10
6秒前
6秒前
7秒前
eavis完成签到,获得积分10
7秒前
淡定宛白完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
重要衬衫发布了新的文献求助10
9秒前
wwz应助WJT采纳,获得10
9秒前
tianhaoyang发布了新的文献求助10
9秒前
何aa应助长孙归尘采纳,获得30
10秒前
Fuch完成签到 ,获得积分10
10秒前
10秒前
ostinato完成签到,获得积分10
10秒前
淳于黎昕完成签到,获得积分10
10秒前
南曦发布了新的文献求助10
10秒前
10秒前
科研通AI6应助鲜于灵竹采纳,获得10
11秒前
俞晓完成签到 ,获得积分10
11秒前
布公完成签到,获得积分10
11秒前
谦让的凝阳完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285920
求助须知:如何正确求助?哪些是违规求助? 4438798
关于积分的说明 13818833
捐赠科研通 4320377
什么是DOI,文献DOI怎么找? 2371398
邀请新用户注册赠送积分活动 1366944
关于科研通互助平台的介绍 1330406