HVAC control in buildings using neural network

暖通空调 解算器 能源消耗 计算机科学 控制器(灌溉) 极限学习机 控制工程 能量(信号处理) 人工神经网络 控制(管理) 人工智能 模拟 工程类 空调 机械工程 电气工程 统计 生物 程序设计语言 数学 农学
作者
A. Abida,Pascal Richter
出处
期刊:Journal of building engineering [Elsevier]
卷期号:65: 105558-105558 被引量:15
标识
DOI:10.1016/j.jobe.2022.105558
摘要

The energy consumption in buildings become the largest part of energy consumption worldwide, accounting for 40% of total global energy consumption and one third of the green house emission (Ahmed et al., Dec 2021). The optimization of building HVAC system require in many cases a thermodynamic model and mathematical solver which consumes a lot of hardware and time. However the data driven methods that presents 48% are often focusing on one type of HVAC systems (Grassi et al., May 2022). The real engineering problem is that the data driven methods are limited to specific systems and investigated for specific configurations. To overcome this problem, many machine learning solutions for optimized control data for HVAC are proposed. Those solutions are tested for real buildings in Germany. This new controller approach considers the effect of sequential inputs such as weather conditions, internal energy and time, and it consider a historical HVAC optimized data output. The investigation is done for CNN, LSTM, RNN-GRU, RNN-attention, and for each method we try to idealize the hyper-parameters and configurations. The goal of the study is to investigate the accuracy of machine learning routine on building optimization controlling and the ability to learn controlled and optimized data for different systems, to compare difference between generation of single output and multiple outputs, to decide the best inputs prepossessing, and to evaluate the extreme weather effects. This investigation proves that data control solution have limitation especially with extreme weather conditions but it can be improved by working on the pre-processing and different configurations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qqz完成签到,获得积分20
2秒前
2秒前
星辰大海应助舒心的初露采纳,获得10
2秒前
明亮翠桃发布了新的文献求助10
2秒前
宇哈哈发布了新的文献求助10
2秒前
田様应助啊富汗采纳,获得30
3秒前
4秒前
发发完成签到,获得积分10
4秒前
5秒前
Arvin发布了新的文献求助10
5秒前
kitsch应助zoro采纳,获得10
6秒前
Nansen发布了新的文献求助10
6秒前
自由若之完成签到,获得积分10
6秒前
6秒前
如月霖发布了新的文献求助20
6秒前
kailash完成签到,获得积分10
6秒前
wanci应助宇哈哈采纳,获得10
7秒前
8秒前
8秒前
9秒前
zcy发布了新的文献求助10
9秒前
雪白映天完成签到,获得积分10
10秒前
五十一笑声应助zyfqpc采纳,获得200
10秒前
10秒前
Ava应助纪震宇采纳,获得10
10秒前
ada阿达完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
clytze应助单纯酯爱学习采纳,获得10
15秒前
搜集达人应助琦琦采纳,获得10
15秒前
ymj发布了新的文献求助10
15秒前
林克发布了新的文献求助10
16秒前
17秒前
臧佳莹发布了新的文献求助10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152922
求助须知:如何正确求助?哪些是违规求助? 2804134
关于积分的说明 7857235
捐赠科研通 2461873
什么是DOI,文献DOI怎么找? 1310502
科研通“疑难数据库(出版商)”最低求助积分说明 629279
版权声明 601788