HVAC control in buildings using neural network

暖通空调 解算器 能源消耗 计算机科学 控制器(灌溉) 极限学习机 控制工程 能量(信号处理) 人工神经网络 控制(管理) 人工智能 模拟 工程类 空调 机械工程 电气工程 统计 生物 程序设计语言 数学 农学
作者
A. Abida,Pascal Richter
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:65: 105558-105558 被引量:15
标识
DOI:10.1016/j.jobe.2022.105558
摘要

The energy consumption in buildings become the largest part of energy consumption worldwide, accounting for 40% of total global energy consumption and one third of the green house emission (Ahmed et al., Dec 2021). The optimization of building HVAC system require in many cases a thermodynamic model and mathematical solver which consumes a lot of hardware and time. However the data driven methods that presents 48% are often focusing on one type of HVAC systems (Grassi et al., May 2022). The real engineering problem is that the data driven methods are limited to specific systems and investigated for specific configurations. To overcome this problem, many machine learning solutions for optimized control data for HVAC are proposed. Those solutions are tested for real buildings in Germany. This new controller approach considers the effect of sequential inputs such as weather conditions, internal energy and time, and it consider a historical HVAC optimized data output. The investigation is done for CNN, LSTM, RNN-GRU, RNN-attention, and for each method we try to idealize the hyper-parameters and configurations. The goal of the study is to investigate the accuracy of machine learning routine on building optimization controlling and the ability to learn controlled and optimized data for different systems, to compare difference between generation of single output and multiple outputs, to decide the best inputs prepossessing, and to evaluate the extreme weather effects. This investigation proves that data control solution have limitation especially with extreme weather conditions but it can be improved by working on the pre-processing and different configurations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助Mexsol采纳,获得10
1秒前
2秒前
荣和发布了新的文献求助10
3秒前
寻悦发布了新的文献求助10
4秒前
4秒前
元气小Liu完成签到,获得积分10
5秒前
王哇噻发布了新的文献求助10
5秒前
6秒前
JamesPei应助z69823采纳,获得30
6秒前
7秒前
孟龙威发布了新的文献求助10
8秒前
思源应助行7采纳,获得10
9秒前
小蘑菇应助雪山飞鹰采纳,获得10
9秒前
9秒前
vic完成签到,获得积分10
9秒前
格泽曜日完成签到,获得积分10
9秒前
zhang发布了新的文献求助10
11秒前
婉枫完成签到,获得积分10
11秒前
科研小白完成签到 ,获得积分10
12秒前
14秒前
王哇噻完成签到,获得积分10
14秒前
深情安青应助居居子采纳,获得10
15秒前
DijiaXu应助平常的凝蕊采纳,获得200
15秒前
孟龙威完成签到,获得积分10
15秒前
跳跃虔完成签到,获得积分10
16秒前
17秒前
17秒前
陶醉的熊完成签到,获得积分10
18秒前
张进萍完成签到,获得积分20
19秒前
19秒前
林子发布了新的文献求助10
20秒前
Yy杨优秀发布了新的文献求助10
20秒前
林兰特完成签到 ,获得积分10
23秒前
dongdong完成签到,获得积分10
24秒前
小马甲应助YunmoXue采纳,获得10
24秒前
25秒前
26秒前
28秒前
ztl发布了新的文献求助10
30秒前
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998784
求助须知:如何正确求助?哪些是违规求助? 3538262
关于积分的说明 11273791
捐赠科研通 3277260
什么是DOI,文献DOI怎么找? 1807481
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075