已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

HVAC control in buildings using neural network

暖通空调 解算器 能源消耗 计算机科学 控制器(灌溉) 极限学习机 控制工程 能量(信号处理) 人工神经网络 控制(管理) 人工智能 模拟 工程类 空调 机械工程 电气工程 统计 生物 程序设计语言 数学 农学
作者
A. Abida,Pascal Richter
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:65: 105558-105558 被引量:15
标识
DOI:10.1016/j.jobe.2022.105558
摘要

The energy consumption in buildings become the largest part of energy consumption worldwide, accounting for 40% of total global energy consumption and one third of the green house emission (Ahmed et al., Dec 2021). The optimization of building HVAC system require in many cases a thermodynamic model and mathematical solver which consumes a lot of hardware and time. However the data driven methods that presents 48% are often focusing on one type of HVAC systems (Grassi et al., May 2022). The real engineering problem is that the data driven methods are limited to specific systems and investigated for specific configurations. To overcome this problem, many machine learning solutions for optimized control data for HVAC are proposed. Those solutions are tested for real buildings in Germany. This new controller approach considers the effect of sequential inputs such as weather conditions, internal energy and time, and it consider a historical HVAC optimized data output. The investigation is done for CNN, LSTM, RNN-GRU, RNN-attention, and for each method we try to idealize the hyper-parameters and configurations. The goal of the study is to investigate the accuracy of machine learning routine on building optimization controlling and the ability to learn controlled and optimized data for different systems, to compare difference between generation of single output and multiple outputs, to decide the best inputs prepossessing, and to evaluate the extreme weather effects. This investigation proves that data control solution have limitation especially with extreme weather conditions but it can be improved by working on the pre-processing and different configurations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FIN应助ceeray23采纳,获得30
5秒前
马拉疯兔子完成签到 ,获得积分10
6秒前
8秒前
8秒前
Sulin发布了新的文献求助10
13秒前
13秒前
MchemG应助动听凝安采纳,获得10
17秒前
桐桐应助Bin_Liu采纳,获得10
19秒前
科研通AI5应助小吴采纳,获得10
26秒前
43秒前
44秒前
MchemG应助动听凝安采纳,获得10
44秒前
44秒前
如意纸鹤完成签到 ,获得积分10
44秒前
GGGrigor完成签到,获得积分10
44秒前
peterwei272完成签到 ,获得积分10
44秒前
义气发卡完成签到 ,获得积分10
45秒前
Friday发布了新的文献求助10
47秒前
WizBLue发布了新的文献求助20
47秒前
hdn完成签到,获得积分10
48秒前
AAZ发布了新的文献求助10
51秒前
53秒前
YifanWang应助西米采纳,获得20
53秒前
56秒前
Wxxxxx完成签到 ,获得积分10
57秒前
57秒前
大模型应助愉快的草丛采纳,获得10
1分钟前
英俊的铭应助Friday采纳,获得10
1分钟前
心灵美的笑卉完成签到,获得积分10
1分钟前
江流有声完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
林狗完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
CEN完成签到,获得积分10
1分钟前
搞搞科研发布了新的文献求助10
1分钟前
1分钟前
CEN发布了新的文献求助10
1分钟前
杨无敌完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733317
求助须知:如何正确求助?哪些是违规求助? 3277552
关于积分的说明 10003186
捐赠科研通 2993445
什么是DOI,文献DOI怎么找? 1642702
邀请新用户注册赠送积分活动 780596
科研通“疑难数据库(出版商)”最低求助积分说明 748912