Complex active sonar targets recognition using variable length deep convolutional neural network evolved by biogeography-based optimizer

超参数 水下 声纳 计算机科学 卷积神经网络 人工智能 水准点(测量) 分类器(UML) 人工神经网络 深度学习 特征提取 模式识别(心理学) 机器学习 地质学 海洋学 大地测量学
作者
Mohammad Khishe,Mokhtar Mohammadi,Adil Hussein Mohammed
出处
期刊:Waves in Random and Complex Media [Informa]
卷期号:: 1-25 被引量:2
标识
DOI:10.1080/17455030.2022.2155319
摘要

Due to heterogeneous sound propagation conditions and fluctuating ambient noises, conventional handcrafted feature extraction methods represent poor results and high complexity in underwater sonar wave recognition tasks. In order to address these shortcomings, this paper proposes a hybrid metaheuristic deep learning-based approach. However, model depth may vary under different underwater ocean conditions. The deeper the model, the greater the number of hyperparameters, challenging the search space. It is crucial to have an efficient algorithm that can obtain an accurate model in a reasonable time. Therefore, this paper proposes the Variable-Length Habitat Biogeography-Based Optimizer (VLHBBO) to tune the hyperparameters of a deep conventional neural network. Given that there is no appropriate dataset for training the proposed model, experimental underwater scattering measurement is conducted on several target and non-target objects of the same size in the east of the Persian Gulf and the west of the Oman Sea. Furthermore, this study uses the benchmark datasets obtained from the New Array Technology III program as test datasets. The performance of the proposed model is compared to other underwater target classifiers in terms of eight metrics. The classification results indicate that the proposed VLBBO-DCNN classifier can effectively classify underwater sonar waves into relevant categories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
二手空气完成签到,获得积分10
刚刚
CodeCraft应助余CC采纳,获得10
1秒前
Hunter发布了新的文献求助10
1秒前
香蕉觅云应助月月君采纳,获得10
2秒前
2秒前
孤独如曼发布了新的文献求助10
3秒前
4秒前
感动素发布了新的文献求助10
4秒前
4秒前
wang发布了新的文献求助10
5秒前
文静应助hi_zhanghao采纳,获得10
5秒前
张国燕发布了新的文献求助10
6秒前
6秒前
李子潭应助科研通管家采纳,获得10
6秒前
6秒前
Orange应助科研通管家采纳,获得30
6秒前
zhonglv7应助科研通管家采纳,获得30
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
xiaowang完成签到 ,获得积分10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
apiaji应助科研通管家采纳,获得20
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
HeAuBook应助科研通管家采纳,获得20
7秒前
Hello应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
8秒前
8秒前
你好发布了新的文献求助10
9秒前
9秒前
蚂蚁牙黑发布了新的文献求助10
9秒前
10秒前
纳米果发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271374
求助须知:如何正确求助?哪些是违规求助? 4429139
关于积分的说明 13787593
捐赠科研通 4307356
什么是DOI,文献DOI怎么找? 2363506
邀请新用户注册赠送积分活动 1359125
关于科研通互助平台的介绍 1322100