非负矩阵分解
质心
聚类分析
故障检测与隔离
基质(化学分析)
正多边形
矩阵分解
模式识别(心理学)
数学
凸优化
人工智能
计算机科学
算法
特征向量
化学
色谱法
物理
几何学
量子力学
执行机构
作者
Lirong Zhai,Jiabao Zhai,Ying Xie
摘要
This study proposes a fault detection and isolation (FDI) approach based on a semi-supervised convex nonnegative matrix factorization (SCNMF) algorithm. In contrast to the existing nonnegative matrix factorization (NMF) algorithm, SCNMF uses the convex combination of each class of labeled samples to calculate the clustering centroid of the samples. The convex combination enhances the accuracy of the clustering centroid and improves the clustering performance of SCNMF. Moreover, the SCNMF-based FDI method is suitable for overcoming the challenge of conducting FDI with insufficient labeled samples. Using a case study on FDI for a penicillin fermentation process, the effectiveness of the SCNMF-based FDI method was validated.
科研通智能强力驱动
Strongly Powered by AbleSci AI