A Filter-APOSD approach for feature selection and linguistic knowledge discovery

计算机科学 滤波器(信号处理) 人工智能 自然语言处理 水准点(测量) 集合(抽象数据类型) 特征选择 特征(语言学) 选择(遗传算法) 词(群论) 知识抽取 语言学 哲学 地理 程序设计语言 大地测量学 计算机视觉
作者
Jianping Yu,Laidi Yuan,Tao Zhang,Jilin Fu,Yuyang Cao,Shaoxiong Li,Xueping Xu
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:44 (3): 4013-4028 被引量:2
标识
DOI:10.3233/jifs-222715
摘要

The development of natural language processing promotes the progress of general linguistic studies. Based on the selected features and the extracted rules for word sense disambiguation (WSD), some valuable knowledge of the relations between linguistic features and word sense classes may be discovered, which may provide theoretical and practical evidence and references for lexical semantic study and natural language processing. However, many available approaches of feature selection for WSD are in the end to end operation, they can only select the optimal features for WSD, but not provide the rules for WSD, which makes knowledge discovery impossible. Therefore, a new Filter-Attribute partial ordered structure diagram (Filter-APOSD) approach is proposed in this article to fulfill both feature selection and knowledge discovery. The new approach is a combination of a Filter approach and an Attribute Partial Ordered Structure Diagram (APOSD) approach. The Filter approach is designed and used for filtering the simplest rules for WSD, and the APOSD approach is used to provide the complementary rules for WSD and visualize the structure of the datasets for knowledge discovery. The features occurring in the final rule set are selected as the optimal features. The proposed approach is verified by the benchmark data set from the SemEval-2007 preposition sense disambiguation corpus with around as the target word for WSD. The test result shows that the accuracy of WSD of around is greatly improved comparing with the one by the state of the art, and 17 out of 22 features are finally selected and ranked according to their contribution to the WSD, and some knowledge on the relations between the word senses and the selected features is discovered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wm发布了新的文献求助10
刚刚
Hello应助ssss采纳,获得10
刚刚
刚刚
2秒前
叨叨完成签到,获得积分10
2秒前
咩咩发布了新的文献求助10
3秒前
三三得九完成签到,获得积分10
3秒前
实验顺利耶完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
科研通AI5应助HHD采纳,获得10
4秒前
酷波er应助lujiajia采纳,获得10
5秒前
hb完成签到,获得积分20
5秒前
Cu_wx发布了新的文献求助10
6秒前
7秒前
研友_VZG7GZ应助罗沫沫采纳,获得10
7秒前
8秒前
夏晴发布了新的文献求助30
8秒前
8秒前
和谐胡萝卜完成签到,获得积分20
8秒前
9秒前
100发布了新的文献求助10
9秒前
顺心牛排发布了新的文献求助10
9秒前
11秒前
鳗鱼寄瑶发布了新的文献求助10
11秒前
糊涂的勒完成签到,获得积分10
11秒前
安安发布了新的文献求助10
11秒前
龚成明发布了新的文献求助10
12秒前
皛皛发布了新的文献求助10
12秒前
Pursuit完成签到,获得积分10
12秒前
懒洋洋完成签到,获得积分10
14秒前
今后应助科研小达人采纳,获得10
14秒前
14秒前
优美若翠发布了新的文献求助10
15秒前
jjjjjjjing发布了新的文献求助10
15秒前
失眠的霸发布了新的文献求助10
15秒前
Baby发布了新的文献求助10
15秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514977
求助须知:如何正确求助?哪些是违规求助? 3097303
关于积分的说明 9235135
捐赠科研通 2792262
什么是DOI,文献DOI怎么找? 1532392
邀请新用户注册赠送积分活动 712025
科研通“疑难数据库(出版商)”最低求助积分说明 707090