Pyrolysis of waste plastics-derived carbon nanomaterials on nickel foam for utilization as an efficient binder-free electrode: Effect of catalyst loading on capacitive performance

材料科学 热解 超级电容器 化学工程 碳纳米泡沫 催化作用 电极 循环伏安法 碳纤维 电解质 电容 电化学 多孔性 复合材料 冶金 有机化学 复合数 化学 物理化学 工程类
作者
Ayesha Tariq Sipra,Lianhang Xu,Cui Quan,Jiawei Wang,Ningbo Gao
出处
期刊:Journal of Analytical and Applied Pyrolysis [Elsevier]
卷期号:169: 105831-105831 被引量:8
标识
DOI:10.1016/j.jaap.2022.105831
摘要

The pyrolytic liquid and gas products are extensively analyzed for practical applications, but, few applications exist for solid product from waste plastics pyrolysis. This study investigates energy storage potential of waste plastics-derived carbon nano-materials (CNMs), pyrolyzed directly on nickel foam (NF) coated with nickel alumina catalyst, in a two-stage fixed bed reactor. Effect of increasing nickel to aluminum molar ratio (0.05, 0.1, 0.2) in energy storage capacity is studied. Galvanostatic charge-discharge curves, at 0.125 A g−1, show highest specific capacitance of 153.75 F g−1 for 0.1 molar ratio. The reason for such high performance is mainly because of a) greater metal-support interaction by using NF substrate, b) formation of CNMs according to base-growth mechanism, providing metal free surface at the top, and c) the presence of equal amounts of disordered and ordered carbons, resulting in meso- and micro-porous structures, providing high electrolyte availability at the electrode surface. The retained rectangle shape of cyclic voltammetry (CV) curve after 5000 cycles, with 98.5 % capacitance retention, also exhibits stability and durability of produced electrode. Though the fabricated electrode involved no post-treatment, yet, it showed higher performance than commercial CNMs. Therefore, this study open new ways to fabricate environment friendly and economically effective supercapacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满小兔子完成签到,获得积分10
刚刚
刚刚
共享精神应助phz采纳,获得10
1秒前
喵了个咪完成签到 ,获得积分10
1秒前
科研通AI5应助俭朴夜雪采纳,获得10
1秒前
1秒前
頑皮燕姿完成签到,获得积分10
1秒前
1秒前
丁德乐可发布了新的文献求助10
2秒前
Minkslion完成签到,获得积分10
2秒前
於松完成签到,获得积分10
2秒前
2秒前
yyyy发布了新的文献求助10
3秒前
稳重无剑完成签到,获得积分10
4秒前
wuha完成签到,获得积分10
4秒前
4秒前
欢喜从霜完成签到,获得积分10
5秒前
Orange应助LiShin采纳,获得10
5秒前
5秒前
欣慰友梅完成签到,获得积分10
5秒前
6秒前
llllllll发布了新的文献求助10
6秒前
6秒前
6秒前
CC完成签到,获得积分10
6秒前
wwuu发布了新的文献求助10
7秒前
shenyanlei发布了新的文献求助10
7秒前
一汁蟹发布了新的文献求助20
8秒前
大个应助绿麦盲区采纳,获得10
8秒前
雨齐完成签到,获得积分10
8秒前
茶艺如何发布了新的文献求助10
8秒前
8秒前
kk完成签到,获得积分10
9秒前
9秒前
123发布了新的文献求助10
9秒前
yyyy完成签到,获得积分10
10秒前
好好学习天天向上完成签到,获得积分10
10秒前
欣慰友梅发布了新的文献求助10
10秒前
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762