计算机科学
药物反应
人工智能
机器学习
接收机工作特性
正规化(语言学)
人工神经网络
灵敏度(控制系统)
分类器(UML)
药品
医学
精神科
电子工程
工程类
作者
Kanggeun Lee,Dongbin Cho,Jinho Jang,Kang Yell Choi,Hyoung-oh Jeong,Jiwon Seo,Won-Ki Jeong,Semin Lee
摘要
Abstract The accurate prediction of cancer drug sensitivity according to the multiomics profiles of individual patients is crucial for precision cancer medicine. However, the development of prediction models has been challenged by the complex crosstalk of input features and the resistance-dominant drug response information contained in public databases. In this study, we propose a novel multidrug response prediction framework, response-aware multitask prediction (RAMP), via a Bayesian neural network and restrict it by soft-supervised contrastive regularization. To utilize network embedding vectors as representation learning features for heterogeneous networks, we harness response-aware negative sampling, which applies cell line–drug response information to the training of network embeddings. RAMP overcomes the prediction accuracy limitation induced by the imbalance of trained response data based on the comprehensive selection and utilization of drug response features. When trained on the Genomics of Drug Sensitivity in Cancer dataset, RAMP achieved an area under the receiver operating characteristic curve > 89%, an area under the precision-recall curve > 59% and an $\textrm{F}_1$ score > 52% and outperformed previously developed methods on both balanced and imbalanced datasets. Furthermore, RAMP predicted many missing drug responses that were not included in the public databases. Our results showed that RAMP will be suitable for the high-throughput prediction of cancer drug sensitivity and will be useful for guiding cancer drug selection processes. The Python implementation for RAMP is available at https://github.com/hvcl/RAMP.
科研通智能强力驱动
Strongly Powered by AbleSci AI