RAMP: response-aware multi-task learning with contrastive regularization for cancer drug response prediction

计算机科学 药物反应 人工智能 机器学习 接收机工作特性 正规化(语言学) 人工神经网络 灵敏度(控制系统) 分类器(UML) 药品 医学 精神科 电子工程 工程类
作者
Kanggeun Lee,Dongbin Cho,Jinho Jang,Kang Yell Choi,Hyoung-oh Jeong,Jiwon Seo,Won-Ki Jeong,Semin Lee
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:1
标识
DOI:10.1093/bib/bbac504
摘要

Abstract The accurate prediction of cancer drug sensitivity according to the multiomics profiles of individual patients is crucial for precision cancer medicine. However, the development of prediction models has been challenged by the complex crosstalk of input features and the resistance-dominant drug response information contained in public databases. In this study, we propose a novel multidrug response prediction framework, response-aware multitask prediction (RAMP), via a Bayesian neural network and restrict it by soft-supervised contrastive regularization. To utilize network embedding vectors as representation learning features for heterogeneous networks, we harness response-aware negative sampling, which applies cell line–drug response information to the training of network embeddings. RAMP overcomes the prediction accuracy limitation induced by the imbalance of trained response data based on the comprehensive selection and utilization of drug response features. When trained on the Genomics of Drug Sensitivity in Cancer dataset, RAMP achieved an area under the receiver operating characteristic curve > 89%, an area under the precision-recall curve > 59% and an $\textrm{F}_1$ score > 52% and outperformed previously developed methods on both balanced and imbalanced datasets. Furthermore, RAMP predicted many missing drug responses that were not included in the public databases. Our results showed that RAMP will be suitable for the high-throughput prediction of cancer drug sensitivity and will be useful for guiding cancer drug selection processes. The Python implementation for RAMP is available at https://github.com/hvcl/RAMP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助科研通管家采纳,获得10
刚刚
May应助科研通管家采纳,获得10
刚刚
吴垚应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
djiwisksk66应助木日采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
pluto应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
大模型应助科研通管家采纳,获得10
1秒前
研友_nPxrVn发布了新的文献求助10
1秒前
典雅的鹤完成签到,获得积分20
2秒前
lalala应助ruann采纳,获得10
2秒前
李健的小迷弟应助Calvin采纳,获得10
3秒前
3秒前
4秒前
独特道消发布了新的文献求助30
5秒前
5秒前
左囧完成签到,获得积分10
6秒前
Coraline应助freedom313514采纳,获得20
6秒前
3395148发布了新的文献求助20
6秒前
7秒前
图雄争霸发布了新的文献求助10
7秒前
8秒前
8秒前
简祺完成签到,获得积分10
9秒前
无聊君发布了新的文献求助30
9秒前
9秒前
9秒前
clewaychan完成签到,获得积分10
10秒前
橙橙汁完成签到,获得积分10
11秒前
11秒前
12秒前
扎心发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952072
求助须知:如何正确求助?哪些是违规求助? 3497487
关于积分的说明 11087843
捐赠科研通 3228126
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801203