RAMP: response-aware multi-task learning with contrastive regularization for cancer drug response prediction

计算机科学 药物反应 人工智能 机器学习 接收机工作特性 正规化(语言学) 人工神经网络 灵敏度(控制系统) 分类器(UML) 药品 医学 精神科 电子工程 工程类
作者
Kanggeun Lee,Dongbin Cho,Jinho Jang,Kang Yell Choi,Hyoung-oh Jeong,Jiwon Seo,Won-Ki Jeong,Semin Lee
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:1
标识
DOI:10.1093/bib/bbac504
摘要

Abstract The accurate prediction of cancer drug sensitivity according to the multiomics profiles of individual patients is crucial for precision cancer medicine. However, the development of prediction models has been challenged by the complex crosstalk of input features and the resistance-dominant drug response information contained in public databases. In this study, we propose a novel multidrug response prediction framework, response-aware multitask prediction (RAMP), via a Bayesian neural network and restrict it by soft-supervised contrastive regularization. To utilize network embedding vectors as representation learning features for heterogeneous networks, we harness response-aware negative sampling, which applies cell line–drug response information to the training of network embeddings. RAMP overcomes the prediction accuracy limitation induced by the imbalance of trained response data based on the comprehensive selection and utilization of drug response features. When trained on the Genomics of Drug Sensitivity in Cancer dataset, RAMP achieved an area under the receiver operating characteristic curve > 89%, an area under the precision-recall curve > 59% and an $\textrm{F}_1$ score > 52% and outperformed previously developed methods on both balanced and imbalanced datasets. Furthermore, RAMP predicted many missing drug responses that were not included in the public databases. Our results showed that RAMP will be suitable for the high-throughput prediction of cancer drug sensitivity and will be useful for guiding cancer drug selection processes. The Python implementation for RAMP is available at https://github.com/hvcl/RAMP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NI完成签到 ,获得积分10
1秒前
1秒前
Jasper应助ffff采纳,获得10
1秒前
1秒前
岁岁菌完成签到,获得积分10
2秒前
ww完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
成森关注了科研通微信公众号
3秒前
祝英台完成签到 ,获得积分10
4秒前
Joker_Li完成签到,获得积分10
4秒前
眼睛大的乐蕊完成签到,获得积分10
4秒前
4秒前
6秒前
6秒前
辰星发布了新的文献求助10
6秒前
小刀刀发布了新的文献求助10
7秒前
8秒前
孙成成完成签到 ,获得积分10
8秒前
9秒前
别骂小喷菇完成签到,获得积分10
9秒前
9秒前
万能图书馆应助独特秀采纳,获得10
10秒前
Lucas应助优美的山晴采纳,获得10
10秒前
xiaoyu发布了新的文献求助10
10秒前
dsaifjs发布了新的文献求助10
11秒前
hushan53发布了新的文献求助10
11秒前
Owen应助小瓢虫采纳,获得10
11秒前
12秒前
12秒前
求文完成签到,获得积分10
12秒前
甜辣小泡芙完成签到,获得积分10
12秒前
lsx完成签到,获得积分10
13秒前
高大的曼寒完成签到,获得积分10
13秒前
14秒前
成森发布了新的文献求助10
14秒前
14秒前
banana完成签到,获得积分10
14秒前
FashionBoy应助zj杰采纳,获得10
15秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141883
求助须知:如何正确求助?哪些是违规求助? 2792846
关于积分的说明 7804392
捐赠科研通 2449137
什么是DOI,文献DOI怎么找? 1303086
科研通“疑难数据库(出版商)”最低求助积分说明 626769
版权声明 601265