Development and validation of a nomogram for predicting Mycoplasma pneumoniae pneumonia in adults

列线图 接收机工作特性 单变量 逻辑回归 医学 一致性 肺炎 曲线下面积 多元统计 单变量分析 多元分析 内科学 统计 数学
作者
Yuan Ren,Yan Wang,Ru‐Ping Liang,Bin Hao,Hongxia Wang,Jing Yuan,Lin Wang,Zhizun Guo,Jianwei Zhang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:1
标识
DOI:10.1038/s41598-022-26565-5
摘要

The study aimed to explore predictors of Mycoplasma pneumoniae pneumonia (MPP) in adults and develop a nomogram predictive model in order to identify high-risk patients early. We retrospectively analysed the clinical data of a total of 337 adult patients with community-acquired pneumonia (CAP) and divided them into MPP and non-MPP groups according to whether they were infected with MP. Univariate and multivariate logistic regression analyses were used to screen independent predictors of MPP in adults and to developed a nomogram model. Receiver operating characteristic (ROC) curve, calibration curve, concordance index (C-index), and decision curve analysis (DCA) were used for the validation of the evaluation model. Finally, the nomogram was further evaluated by internal verification. Age, body temperature, dry cough, dizziness, CRP and tree-in-bud sign were independent predictors of MPP in adults (P < 0.05). The nomogram showed high accuracy with C-index of 0.836 and well-fitted calibration curves in both the training and validation sets. The area under the receiver operating curve (AUROC) was 0.829 (95% CI 0.774-0.883) for the training set and 0.847 (95% CI 0.768-0.925) for the validation set. This nomogram prediction model can accurately predict the risk of MPP occurrence in adults, which helps clinicians identify high-risk patients at an early stage and make drug selection and clinical decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潸潸发布了新的文献求助10
刚刚
脆弱的仙人掌完成签到,获得积分20
刚刚
成哥发布了新的文献求助10
刚刚
灵巧的坤完成签到,获得积分10
1秒前
王某人完成签到 ,获得积分10
1秒前
欢呼的明雪完成签到,获得积分10
2秒前
2秒前
嘉禾望岗发布了新的文献求助10
2秒前
大橙子完成签到,获得积分10
2秒前
东北信风完成签到 ,获得积分10
2秒前
今后应助祝顺遂采纳,获得10
2秒前
NADA完成签到,获得积分10
3秒前
长安完成签到,获得积分10
3秒前
AA完成签到,获得积分10
3秒前
NANA发布了新的文献求助10
3秒前
5秒前
5秒前
6秒前
8秒前
8秒前
9秒前
科研通AI5应助无悔呀采纳,获得10
9秒前
9秒前
littlewhite关注了科研通微信公众号
10秒前
10秒前
零点起步完成签到,获得积分10
10秒前
慕青应助大力的含卉采纳,获得10
10秒前
善良过客发布了新的文献求助10
11秒前
11秒前
11秒前
dildil发布了新的文献求助10
11秒前
11秒前
hu970发布了新的文献求助10
12秒前
12秒前
王思鲁发布了新的文献求助30
12秒前
七个小矮人完成签到,获得积分10
13秒前
Aria完成签到,获得积分10
13秒前
感性的安露应助结实雪卉采纳,获得20
14秒前
零点起步发布了新的文献求助10
15秒前
故意的傲玉应助Ll采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759