Nanoization of Technical Pesticides: Facile and Smart Pesticide Nanocapsules Directly Encapsulated through “On Site” Metal–Polyphenol Coordination Assembly for Improved Efficacy and Biosafety
Facile pesticide nanocapsules were successfully prepared by directly encapsulating the antisolvent precipitation of pesticides through instantaneous "on site" coordination assembly of tannic acid and Fe3+, avoiding tedious preparation, time consumption, and large amounts of organic solvents. The pesticide nanocapsules showed excellent resistance to ultraviolet photolysis and rainwater washing owing to the nanocapsule walls. The smart pesticide nanocapsules exhibited the controlled release of pesticides under multidimensional stimuli, such as acidic/alkaline pH, glutathione, H2O2, phytic acid, laccase, tannase, and sunlight, which were related to the physiological and natural environments of crops, pests, and pathogens. The tebuconazole nanocapsules not only enhanced the fungicidal activity against Fusarium graminearum and effective control efficacy in wheat powdery mildew through foliar spray and seed coating, but also improved the biosafety of target plant growth and nontarget organisms. The facile, smart, efficient, safe, and green pesticide nanocapsules using the universal strategy have broad application prospects in ecoagriculture.