亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transformer-based neural speech decoding from surface and depth electrode signals

解码方法 计算机科学 变压器 语音识别 神经解码 电极 人工智能 电压 电气工程 化学 算法 工程类 物理化学
作者
Junbo Chen,Xupeng Chen,Ran Wang,Chenqian Le,Amirhossein Khalilian-Gourtani,Erika Jensen,Patricia Dugan,Werner Doyle,Orrin Devinsky,Daniel Friedman,Adeen Flinker,Yao Wang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/adab21
摘要

Abstract Objective: This study investigates speech decoding from neural signals captured by intracranial electrodes. Most prior works can only work with electrodes on a 2D grid (i.e., Electrocorticographic or ECoG array) and data from a single patient. We aim to design a deep-learning model architecture that can accommodate both surface (ECoG) and depth (stereotactic EEG or sEEG) electrodes. The architecture should allow training on data from multiple participants with large variability in electrode placements. The model should not have subject-specific layers, and the trained model should perform well on participants unseen during training.

Approach: We propose a novel transformer-based model architecture named SwinTW that can work with arbitrarily positioned electrodes by leveraging their 3D locations on the cortex rather than their positions on a 2D grid. We train subject-specific models using data from a single participant and multi-subject models exploiting data from multiple participants.
Main Results: The subject-specific models using only low-density 8x8 ECoG data achieved high decoding Pearson Correlation Coefficient with ground truth spectrogram (PCC=0.817), over N=43 participants, significantly outperforming our prior convolutional ResNet model and the 3D Swin transformer model. Incorporating additional strip, depth, and grid electrodes available in each participant (N=39) led to further improvement (PCC=0.838). For participants with only sEEG electrodes (N=9), subject-specific models still enjoy comparable performance with an average PCC=0.798. A single multi-subject model trained on ECoG data from 15 participants yielded comparable results (PCC=0.837) as 15 models trained individually for these participants (PCC=0.831). Furthermore, the multi-subject models achieved high performance on unseen participants, with an average PCC=0.765 in leave-one-out cross-validation.

Significance: The proposed SwinTW decoder enables future speech decoding approaches to utilize any electrode placement that is clinically optimal or feasible for a particular participant, including using only depth electrodes, which are more routinely implanted in chronic neurosurgical procedures. The success of the single multi-subject model when tested on participants within the training cohort demonstrates that the model architecture is capable of exploiting data from multiple participants with diverse electrode placements. The architecture’s flexibility in training with both single-subject and multi-subject data, as well as grid and non-grid electrodes, ensures its broad applicability. Importantly, the generalizability of the multi-subject models in our study population suggests that a model trained using paired acoustic and neural data from multiple patients can potentially be applied to new patients with speech disability where acoustic-neural training data is not feasible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23秒前
HRZ完成签到 ,获得积分10
32秒前
一个小胖子完成签到,获得积分10
32秒前
洪荒少女发布了新的文献求助10
43秒前
脑洞疼应助科研通管家采纳,获得10
54秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
领导范儿应助微凉采纳,获得10
56秒前
1分钟前
小小小何完成签到 ,获得积分10
1分钟前
DocChen发布了新的文献求助10
2分钟前
淡淡紫山完成签到,获得积分10
2分钟前
2分钟前
太阳的肩膀哇完成签到,获得积分10
2分钟前
汉堡包应助太阳的肩膀哇采纳,获得10
2分钟前
Sunny完成签到 ,获得积分10
3分钟前
3分钟前
文风杰采发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
小王完成签到 ,获得积分10
3分钟前
孜然味的拜拜肉完成签到,获得积分10
3分钟前
直率的青寒完成签到,获得积分10
3分钟前
NagatoYuki完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
circle完成签到,获得积分10
4分钟前
4分钟前
oscar完成签到,获得积分10
5分钟前
pinkman发布了新的文献求助30
5分钟前
5分钟前
5分钟前
xx完成签到 ,获得积分10
5分钟前
DocChen发布了新的文献求助10
6分钟前
6分钟前
6分钟前
鹿茸与共发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3360056
求助须知:如何正确求助?哪些是违规求助? 2982597
关于积分的说明 8704562
捐赠科研通 2664401
什么是DOI,文献DOI怎么找? 1459023
科研通“疑难数据库(出版商)”最低求助积分说明 675397
邀请新用户注册赠送积分活动 666421