Transformer-based neural speech decoding from surface and depth electrode signals

解码方法 计算机科学 变压器 语音识别 神经解码 电极 人工智能 电压 电气工程 化学 算法 工程类 物理化学
作者
Junbo Chen,Xupeng Chen,Ran Wang,Chenqian Le,Amirhossein Khalilian-Gourtani,Erika Jensen,Patricia Dugan,Werner Doyle,Orrin Devinsky,Daniel Friedman,Adeen Flinker,Yao Wang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/adab21
摘要

Abstract Objective: This study investigates speech decoding from neural signals captured by intracranial electrodes. Most prior works can only work with electrodes on a 2D grid (i.e., Electrocorticographic or ECoG array) and data from a single patient. We aim to design a deep-learning model architecture that can accommodate both surface (ECoG) and depth (stereotactic EEG or sEEG) electrodes. The architecture should allow training on data from multiple participants with large variability in electrode placements. The model should not have subject-specific layers, and the trained model should perform well on participants unseen during training.

Approach: We propose a novel transformer-based model architecture named SwinTW that can work with arbitrarily positioned electrodes by leveraging their 3D locations on the cortex rather than their positions on a 2D grid. We train subject-specific models using data from a single participant and multi-subject models exploiting data from multiple participants.
Main Results: The subject-specific models using only low-density 8x8 ECoG data achieved high decoding Pearson Correlation Coefficient with ground truth spectrogram (PCC=0.817), over N=43 participants, significantly outperforming our prior convolutional ResNet model and the 3D Swin transformer model. Incorporating additional strip, depth, and grid electrodes available in each participant (N=39) led to further improvement (PCC=0.838). For participants with only sEEG electrodes (N=9), subject-specific models still enjoy comparable performance with an average PCC=0.798. A single multi-subject model trained on ECoG data from 15 participants yielded comparable results (PCC=0.837) as 15 models trained individually for these participants (PCC=0.831). Furthermore, the multi-subject models achieved high performance on unseen participants, with an average PCC=0.765 in leave-one-out cross-validation.

Significance: The proposed SwinTW decoder enables future speech decoding approaches to utilize any electrode placement that is clinically optimal or feasible for a particular participant, including using only depth electrodes, which are more routinely implanted in chronic neurosurgical procedures. The success of the single multi-subject model when tested on participants within the training cohort demonstrates that the model architecture is capable of exploiting data from multiple participants with diverse electrode placements. The architecture’s flexibility in training with both single-subject and multi-subject data, as well as grid and non-grid electrodes, ensures its broad applicability. Importantly, the generalizability of the multi-subject models in our study population suggests that a model trained using paired acoustic and neural data from multiple patients can potentially be applied to new patients with speech disability where acoustic-neural training data is not feasible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上小土豆完成签到 ,获得积分10
2秒前
杰尼龟的鱼完成签到 ,获得积分10
6秒前
安然完成签到 ,获得积分10
7秒前
张希伦完成签到 ,获得积分10
7秒前
任性翠安完成签到 ,获得积分10
11秒前
dong完成签到 ,获得积分10
13秒前
神说完成签到,获得积分0
15秒前
量子星尘发布了新的文献求助10
21秒前
Aimee完成签到 ,获得积分10
21秒前
徐彬荣完成签到,获得积分10
22秒前
研友_8yN60L完成签到,获得积分10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
光亮的自行车完成签到 ,获得积分10
23秒前
李东东完成签到 ,获得积分10
38秒前
王多肉完成签到,获得积分10
42秒前
Iiiilr完成签到 ,获得积分10
43秒前
杨幂完成签到,获得积分10
44秒前
51秒前
hellokitty完成签到,获得积分10
54秒前
54秒前
小四发布了新的文献求助10
55秒前
1分钟前
西瓜完成签到 ,获得积分10
1分钟前
包容的忆灵完成签到 ,获得积分10
1分钟前
高兴尔冬发布了新的文献求助10
1分钟前
xiang完成签到 ,获得积分0
1分钟前
小四完成签到,获得积分10
1分钟前
FashionBoy应助slayers采纳,获得30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
黑眼圈完成签到 ,获得积分10
1分钟前
jia完成签到 ,获得积分10
1分钟前
如履平川完成签到 ,获得积分10
1分钟前
科目三应助忧伤的步美采纳,获得10
1分钟前
大椒完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
wisdom完成签到,获得积分10
1分钟前
slayers发布了新的文献求助30
1分钟前
1分钟前
e746700020完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022