Transformer-based neural speech decoding from surface and depth electrode signals

解码方法 计算机科学 变压器 语音识别 神经解码 电极 人工智能 电压 电气工程 化学 算法 工程类 物理化学
作者
Junbo Chen,Xupeng Chen,Ran Wang,Chenqian Le,Amirhossein Khalilian-Gourtani,Erika Jensen,Patricia Dugan,Werner Doyle,Orrin Devinsky,Daniel Friedman,Adeen Flinker,Yao Wang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/adab21
摘要

Abstract Objective: This study investigates speech decoding from neural signals captured by intracranial electrodes. Most prior works can only work with electrodes on a 2D grid (i.e., Electrocorticographic or ECoG array) and data from a single patient. We aim to design a deep-learning model architecture that can accommodate both surface (ECoG) and depth (stereotactic EEG or sEEG) electrodes. The architecture should allow training on data from multiple participants with large variability in electrode placements. The model should not have subject-specific layers, and the trained model should perform well on participants unseen during training.

Approach: We propose a novel transformer-based model architecture named SwinTW that can work with arbitrarily positioned electrodes by leveraging their 3D locations on the cortex rather than their positions on a 2D grid. We train subject-specific models using data from a single participant and multi-subject models exploiting data from multiple participants.
Main Results: The subject-specific models using only low-density 8x8 ECoG data achieved high decoding Pearson Correlation Coefficient with ground truth spectrogram (PCC=0.817), over N=43 participants, significantly outperforming our prior convolutional ResNet model and the 3D Swin transformer model. Incorporating additional strip, depth, and grid electrodes available in each participant (N=39) led to further improvement (PCC=0.838). For participants with only sEEG electrodes (N=9), subject-specific models still enjoy comparable performance with an average PCC=0.798. A single multi-subject model trained on ECoG data from 15 participants yielded comparable results (PCC=0.837) as 15 models trained individually for these participants (PCC=0.831). Furthermore, the multi-subject models achieved high performance on unseen participants, with an average PCC=0.765 in leave-one-out cross-validation.

Significance: The proposed SwinTW decoder enables future speech decoding approaches to utilize any electrode placement that is clinically optimal or feasible for a particular participant, including using only depth electrodes, which are more routinely implanted in chronic neurosurgical procedures. The success of the single multi-subject model when tested on participants within the training cohort demonstrates that the model architecture is capable of exploiting data from multiple participants with diverse electrode placements. The architecture’s flexibility in training with both single-subject and multi-subject data, as well as grid and non-grid electrodes, ensures its broad applicability. Importantly, the generalizability of the multi-subject models in our study population suggests that a model trained using paired acoustic and neural data from multiple patients can potentially be applied to new patients with speech disability where acoustic-neural training data is not feasible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助暴躁小龙采纳,获得10
1秒前
笑点低方盒完成签到,获得积分10
2秒前
归尘发布了新的文献求助10
2秒前
传奇3应助momo采纳,获得10
2秒前
3秒前
胡图图发布了新的文献求助10
4秒前
6秒前
蜜HHH完成签到 ,获得积分10
7秒前
8秒前
8秒前
我要文献发布了新的文献求助10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
12秒前
暴躁小龙发布了新的文献求助10
13秒前
张润泽完成签到 ,获得积分10
13秒前
14秒前
文档发布了新的文献求助10
14秒前
15秒前
17秒前
18秒前
18秒前
19秒前
20秒前
20秒前
烟花应助zwk采纳,获得10
22秒前
蔡芝艳关注了科研通微信公众号
22秒前
YI完成签到,获得积分10
25秒前
25秒前
大个应助科研通管家采纳,获得10
26秒前
26秒前
充电宝应助科研通管家采纳,获得10
27秒前
SYLH应助科研通管家采纳,获得20
27秒前
Ava应助科研通管家采纳,获得10
27秒前
丘比特应助科研通管家采纳,获得10
27秒前
情怀应助科研通管家采纳,获得10
27秒前
Hello应助科研通管家采纳,获得10
27秒前
Owen应助科研通管家采纳,获得10
27秒前
27秒前
su发布了新的文献求助10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158