Two neural network Unet architecture for subfilter stress modeling

建筑 计算机科学 压力(语言学) 人工神经网络 人工智能 哲学 历史 语言学 考古
作者
Andy Wu,Sanjiva K. Lele
出处
期刊:Physical review fluids [American Physical Society]
卷期号:10 (1)
标识
DOI:10.1103/physrevfluids.10.014601
摘要

Accurate subfilter stress modeling aids in increasing the accuracy of large-eddy simulations. A two neural network architecture for subfilter stress modeling is proposed for its magnitude and tensor structure based on a tensor basis expansion of the subfilter stress tensor. Due to the fully convolutional structure of the neural networks, they are trained on varying filter widths and varying domain sizes with a physics-informed loss function that enforces dissipation directly while allowing for backscatter. This structure is first evaluated a priori for forced homogeneous isotropic turbulence and channel flow conditions, where it is demonstrated that the neural networks can accurately predict the subfilter stress even in domains where, on average, over 20% of the kinetic energy (as compared to direct numerical simulation) is filtered out. The two neural network architecture is also analyzed in a posteriori settings for both forced homogeneous isotropic turbulence and channel flow conditions without clipping, where it is found that the model improves turbulent space-time correlations for forced homogeneous isotropic turbulence and mean velocity profiles for channel flow. In addition, the neural network provides reasonable results in simulations at Reynolds numbers over 30 times the Reynolds numbers in the training set. locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon locked icon Physics Subject Headings (PhySH)TurbulenceTurbulence modelingConvolutional neural networksDeep learningLarge eddy simulationsMachine learning
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方法发布了新的文献求助10
1秒前
1秒前
小二郎应助yhx046采纳,获得10
3秒前
3秒前
4秒前
TT发布了新的文献求助10
8秒前
9秒前
科研通AI2S应助哈哈哈采纳,获得30
10秒前
小二郎应助赵医生采纳,获得10
11秒前
完美世界应助方法采纳,获得10
11秒前
11秒前
12秒前
平常的半凡应助Jiaowen采纳,获得10
13秒前
您得疼完成签到,获得积分20
14秒前
孤独箴言发布了新的文献求助10
15秒前
端庄乐松发布了新的文献求助10
16秒前
您得疼发布了新的文献求助10
16秒前
Akim应助CABBAGE采纳,获得10
18秒前
18秒前
环游世界完成签到 ,获得积分10
19秒前
19秒前
彭于彦祖应助七月采纳,获得20
20秒前
JIE完成签到 ,获得积分10
21秒前
21秒前
TT完成签到,获得积分10
21秒前
Decline发布了新的文献求助10
23秒前
爆米花应助您得疼采纳,获得10
23秒前
洪焕良发布了新的文献求助10
26秒前
26秒前
27秒前
赵医生完成签到,获得积分10
27秒前
SciGPT应助THEO采纳,获得10
29秒前
付艳完成签到,获得积分10
29秒前
沉默以山完成签到,获得积分20
29秒前
Decline完成签到 ,获得积分10
32秒前
SciGPT应助科研通管家采纳,获得10
32秒前
上官若男应助Lujiamingfei采纳,获得10
32秒前
Owen应助科研通管家采纳,获得10
32秒前
沧笙踏歌应助科研通管家采纳,获得10
32秒前
FIN应助科研通管家采纳,获得30
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962932
求助须知:如何正确求助?哪些是违规求助? 3508908
关于积分的说明 11143865
捐赠科研通 3241789
什么是DOI,文献DOI怎么找? 1791700
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803579