生物相容性
核化学
化学
蒸馏水
肿胀 的
动态光散射
纳米凝胶
曙红
等电点
水解
染色
赖氨酸
药物输送
生物化学
色谱法
纳米颗粒
有机化学
材料科学
氨基酸
纳米技术
酶
生物
复合材料
遗传学
作者
Mehtap Sahiner,Zhi Tian,Diane Allen‐Gipson,Aydın K. Sunol,Nurettin Şahiner
摘要
Hematoxylin (HT) is a natural staining dye used in histopathology, often combined with Eosin for H&E staining. A poly(hematoxylin-co-l-lysine) (p(HT-co-l)) nanonetwork was synthesized through a one-step Mannich condensation reaction using formaldehyde as a linking agent. The resulting p(HT-co-l) nanogels had an average size of about 200 nm and exhibited a smooth surface and desirable functional groups such as -OH, -NH2, and -COOH, as recognized by FT-IR analysis. The isoelectric point (IEP) of the p(HT-co-l) nanogel was determined as pH 7.9, close to physiological environments, despite HT being acidic IEP at pH 1.7 and l-lysine being basic IPE at pH 8.7. The time-dependent swelling studies of p(HT-co-l) nanogels were carried out using dynamic light scattering (DLS) in different salt solutions, e.g., MgCl2, KNO3, KCl, PBS, and DI water environments revealed that nanogels have high swelling ability depending on the medium, e.g., >10-fold in a saline solution compared to distilled water within 1.5 h. Hydrolytic degradation studies in PBS demonstrated a linear release profile up to 125 h at 37.5 °C. The p(HT-co-l) nanogels also demonstrated significant antimicrobial and antifungal activities against E. coli (ATCC 8739), S. aureus (ATCC 6538), and C. albicans (ATCC 10231). Furthermore, biocompatibility tests indicated that p(HT-co-l) nanogels are more biocompatible than HT alone, as tested with human Nuli-1 bronchial epithelial cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI