已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction

计算机科学 曲面重建 计算机图形学(图像) 平面的 高斯分布 高斯过程 计算机视觉 曲面(拓扑) 人工智能 计算科学 几何学 数学 物理 量子力学
作者
Danpeng Chen,Hai Li,Weicai Ye,Yifan Wang,Weijian Xie,Shangjin Zhai,Nan Wang,Haomin Liu,Hujun Bao,Guofeng Zhang
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:2
标识
DOI:10.1109/tvcg.2024.3494046
摘要

Recently, 3D Gaussian Splatting (3DGS) has attracted widespread attention due to its high-quality rendering, and ultra-fast training and rendering speed. However, due to the unstructured and irregular nature of Gaussian point clouds, it is difficult to guarantee geometric reconstruction accuracy and multi-view consistency simply by relying on image reconstruction loss. Although many studies on surface reconstruction based on 3DGS have emerged recently, the quality of their meshes is generally unsatisfactory. To address this problem, we propose a fast planar-based Gaussian splatting reconstruction representation (PGSR) to achieve high-fidelity surface reconstruction while ensuring high-quality rendering. Specifically, we first introduce an unbiased depth rendering method, which directly renders the distance from the camera origin to the Gaussian plane and the corresponding normal map based on the Gaussian distribution of the point cloud, and divides the two to obtain the unbiased depth. We then introduce single-view geometric, multi-view photometric, and geometric regularization to preserve global geometric accuracy. We also propose a camera exposure compensation model to cope with scenes with large illumination variations. Experiments on indoor and outdoor scenes show that the proposed method achieves fast training and rendering while maintaining high-fidelity rendering and geometric reconstruction, outperforming 3DGS-based and NeRF-based methods. Our code will be made publicly available, and more information can be found on our project page (https://zju3dv.github.io/pgsr/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟大猫应助11采纳,获得10
刚刚
温偏烫发布了新的文献求助10
1秒前
fan完成签到 ,获得积分10
1秒前
2秒前
科研通AI5应助水门采纳,获得10
2秒前
wwc发布了新的文献求助10
3秒前
Wmhuahuaood发布了新的文献求助10
4秒前
4秒前
5秒前
舒伯特完成签到 ,获得积分10
7秒前
研友_VZG7GZ应助戴岱采纳,获得10
7秒前
梦想去广州当靓仔完成签到 ,获得积分10
7秒前
8秒前
敏er好学发布了新的文献求助10
9秒前
9秒前
小张想毕业完成签到 ,获得积分10
10秒前
11秒前
zhou完成签到 ,获得积分10
12秒前
宋宋发布了新的文献求助10
12秒前
pyc076发布了新的文献求助10
13秒前
TMU完成签到,获得积分10
16秒前
16秒前
16秒前
Ao完成签到,获得积分20
17秒前
17秒前
科研通AI5应助li采纳,获得10
19秒前
19秒前
丹丹完成签到,获得积分10
19秒前
小璐sunny发布了新的文献求助10
21秒前
所所应助Poik采纳,获得10
23秒前
23秒前
pyc076完成签到,获得积分10
23秒前
23秒前
jshshsjs发布了新的文献求助10
24秒前
南天发布了新的文献求助10
25秒前
33完成签到 ,获得积分10
25秒前
拾柒发布了新的文献求助10
25秒前
27秒前
NexusExplorer应助liberty采纳,获得10
28秒前
orixero应助积极太清采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538747
求助须知:如何正确求助?哪些是违规求助? 3116472
关于积分的说明 9325379
捐赠科研通 2814343
什么是DOI,文献DOI怎么找? 1546605
邀请新用户注册赠送积分活动 720644
科研通“疑难数据库(出版商)”最低求助积分说明 712109