度量(数据仓库)
限制
拉回吸引子
统计物理学
吸引子
格子(音乐)
拉回
物理
应用数学
数学
数学分析
计算机科学
工程类
机械工程
数据库
声学
作者
Lin Shi,Jun Shen,Kening Lu
出处
期刊:Cornell University - arXiv
日期:2024-12-19
标识
DOI:10.48550/arxiv.2412.15528
摘要
We study the long-term behavior of the distribution of the solution process to the non-autonomous McKean-Vlasov stochastic delay lattice system defined on the integer set $\mathbb{Z}$. Specifically, we first establish the well-posedness of solutions for this non-autonomous, distribution-dependent stochastic delay lattice system. Then, we prove the existence and uniqueness of pullback measure attractors for the non-autonomous dynamical system generated by the solution operators, defined in the space of probability measures. Furthermore, as an application of the pullback measure attractor, we prove the ergodicity and exponentially mixing of invariant measures for the system under appropriate conditions. Finally, we establish the upper semi-continuity of these attractors as the distribution-dependent stochastic delay lattice system converges to a distribution-independent system.
科研通智能强力驱动
Strongly Powered by AbleSci AI