Incorporating safety field theory into interactive trajectory prediction between VRU and vehicle: An integrated spatial–temporal and risk-aware model

弹道 领域(数学) 毒物控制 工程类 主动安全 计算机科学 汽车工程 医疗急救 医学 数学 物理 天文 纯数学
作者
Dianchen Zhu,Zheyan Fan,Wei Ma,Xuxin Zhang,Ho-Yin Chan,Mingming Zhao
出处
期刊:Traffic Injury Prevention [Informa]
卷期号:: 1-10
标识
DOI:10.1080/15389588.2024.2443008
摘要

Intersections represent critical points where conflicts between vulnerable road users (VRUs) and vehicles often occur, posing significant safety challenges globally. Despite efforts to mitigate heterogeneous traffic individual conflict, the accurate trajectory prediction of VRU-vehicle interactions remains elusive due to asymmetric information, unequal risks, and uncertainties in decision-making behaviors. Most existing trajectory prediction models predominantly focus on either VRUs or vehicles, neglecting the complex mechanisms of interactions between heterogeneous traffic agents. This article proposes a trajectory prediction model that incorporates spatial-temporal characteristics and security risk awareness as an alternative approach to these challenges. The proposed spatial-temporal risk network (STRN) combines the awareness of time, space, and quantified safety risk to improve the performance of this model. First, the safety potential field theory is used to quantify and label the risks in the VRU-vehicle interaction scenario, and the effect of conflict risk on the agents' motion trajectory is considered. Second, the spatial constraint features of agent movement are extracted from the spatial dimension. Third, the change characteristics of the agent's motion trajectory over time are extracted from time dimension. The experimental results show that the model can effectively identify the motion trajectories under the complex interaction between VRUs and vehicles. The ablation experiments confirm that the integration of spatial-temporal risk dimensions positively impacts the accuracy of interaction prediction. The model shows great robustness in different scenario transferability tests. This study revisits the challenge of predicting interaction trajectories of heterogeneous objects in unsignalized intersection scenarios, a topic that has not been extensively explored. The proposed STRN model, with its performance and robustness, provides a new scheme for improving the level of traffic safety and promoting intelligent autonomous vehicle decision system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助shier采纳,获得10
刚刚
xjtu发布了新的文献求助10
刚刚
Aurinse发布了新的文献求助10
1秒前
耍酷的卿应助mumumumu采纳,获得10
1秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
上官若男应助鲨鲨采纳,获得10
3秒前
4秒前
无极微光应助132采纳,获得20
4秒前
曹杨磊完成签到,获得积分10
4秒前
4秒前
5秒前
xjtu完成签到,获得积分10
6秒前
彭于晏应助spinon采纳,获得10
7秒前
8秒前
KSung完成签到 ,获得积分10
8秒前
大模型应助余周2024采纳,获得10
8秒前
Twonej应助Andy采纳,获得30
9秒前
可莉完成签到 ,获得积分10
10秒前
10秒前
wsdshuai比发布了新的文献求助10
11秒前
魏猛完成签到,获得积分10
11秒前
12秒前
桐桐应助wei采纳,获得10
12秒前
仁爱嫣发布了新的文献求助20
12秒前
力劈华山完成签到,获得积分10
13秒前
JamesPei应助平淡大船采纳,获得10
14秒前
14秒前
14秒前
li给li的求助进行了留言
15秒前
靓丽衫完成签到 ,获得积分10
15秒前
hhh完成签到,获得积分20
16秒前
科研小白完成签到 ,获得积分10
16秒前
ai幸完成签到,获得积分10
16秒前
科研通AI6.1应助积极纲采纳,获得10
16秒前
CodeCraft应助E10100采纳,获得10
16秒前
爆米花应助Long采纳,获得10
17秒前
132完成签到,获得积分10
17秒前
18秒前
shanshanerchuan完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761101
求助须知:如何正确求助?哪些是违规求助? 5527734
关于积分的说明 15398943
捐赠科研通 4897671
什么是DOI,文献DOI怎么找? 2634354
邀请新用户注册赠送积分活动 1582460
关于科研通互助平台的介绍 1537768