Incorporating safety field theory into interactive trajectory prediction between VRU and vehicle: An integrated spatial–temporal and risk-aware model

弹道 领域(数学) 毒物控制 工程类 主动安全 计算机科学 汽车工程 医疗急救 医学 数学 物理 天文 纯数学
作者
Dianchen Zhu,Zheyan Fan,Wei Ma,Xuxin Zhang,Ho-Yin Chan,Mingming Zhao
出处
期刊:Traffic Injury Prevention [Informa]
卷期号:: 1-10
标识
DOI:10.1080/15389588.2024.2443008
摘要

Intersections represent critical points where conflicts between vulnerable road users (VRUs) and vehicles often occur, posing significant safety challenges globally. Despite efforts to mitigate heterogeneous traffic individual conflict, the accurate trajectory prediction of VRU-vehicle interactions remains elusive due to asymmetric information, unequal risks, and uncertainties in decision-making behaviors. Most existing trajectory prediction models predominantly focus on either VRUs or vehicles, neglecting the complex mechanisms of interactions between heterogeneous traffic agents. This article proposes a trajectory prediction model that incorporates spatial-temporal characteristics and security risk awareness as an alternative approach to these challenges. The proposed spatial-temporal risk network (STRN) combines the awareness of time, space, and quantified safety risk to improve the performance of this model. First, the safety potential field theory is used to quantify and label the risks in the VRU-vehicle interaction scenario, and the effect of conflict risk on the agents' motion trajectory is considered. Second, the spatial constraint features of agent movement are extracted from the spatial dimension. Third, the change characteristics of the agent's motion trajectory over time are extracted from time dimension. The experimental results show that the model can effectively identify the motion trajectories under the complex interaction between VRUs and vehicles. The ablation experiments confirm that the integration of spatial-temporal risk dimensions positively impacts the accuracy of interaction prediction. The model shows great robustness in different scenario transferability tests. This study revisits the challenge of predicting interaction trajectories of heterogeneous objects in unsignalized intersection scenarios, a topic that has not been extensively explored. The proposed STRN model, with its performance and robustness, provides a new scheme for improving the level of traffic safety and promoting intelligent autonomous vehicle decision system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
孔雨珍发布了新的文献求助10
3秒前
4秒前
科研dog完成签到,获得积分10
4秒前
4秒前
4秒前
帅b发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
bkagyin应助舒服的皮皮虾采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
蓝天应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得30
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
蓝天应助科研通管家采纳,获得10
8秒前
michen发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
来日昭昭应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
yznfly应助科研通管家采纳,获得20
8秒前
蓝天应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
蓝天应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
yznfly应助科研通管家采纳,获得20
8秒前
Ava应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675662
求助须知:如何正确求助?哪些是违规求助? 4948205
关于积分的说明 15154348
捐赠科研通 4834937
什么是DOI,文献DOI怎么找? 2589774
邀请新用户注册赠送积分活动 1543545
关于科研通互助平台的介绍 1501282