亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Incorporating safety field theory into interactive trajectory prediction between VRU and vehicle: An integrated spatial–temporal and risk-aware model

弹道 领域(数学) 毒物控制 工程类 主动安全 计算机科学 汽车工程 医疗急救 医学 数学 物理 天文 纯数学
作者
Dianchen Zhu,Zheyan Fan,Wei Ma,Xuxin Zhang,Ho-Yin Chan,Mingming Zhao
出处
期刊:Traffic Injury Prevention [Informa]
卷期号:: 1-10
标识
DOI:10.1080/15389588.2024.2443008
摘要

Intersections represent critical points where conflicts between vulnerable road users (VRUs) and vehicles often occur, posing significant safety challenges globally. Despite efforts to mitigate heterogeneous traffic individual conflict, the accurate trajectory prediction of VRU-vehicle interactions remains elusive due to asymmetric information, unequal risks, and uncertainties in decision-making behaviors. Most existing trajectory prediction models predominantly focus on either VRUs or vehicles, neglecting the complex mechanisms of interactions between heterogeneous traffic agents. This article proposes a trajectory prediction model that incorporates spatial-temporal characteristics and security risk awareness as an alternative approach to these challenges. The proposed spatial-temporal risk network (STRN) combines the awareness of time, space, and quantified safety risk to improve the performance of this model. First, the safety potential field theory is used to quantify and label the risks in the VRU-vehicle interaction scenario, and the effect of conflict risk on the agents' motion trajectory is considered. Second, the spatial constraint features of agent movement are extracted from the spatial dimension. Third, the change characteristics of the agent's motion trajectory over time are extracted from time dimension. The experimental results show that the model can effectively identify the motion trajectories under the complex interaction between VRUs and vehicles. The ablation experiments confirm that the integration of spatial-temporal risk dimensions positively impacts the accuracy of interaction prediction. The model shows great robustness in different scenario transferability tests. This study revisits the challenge of predicting interaction trajectories of heterogeneous objects in unsignalized intersection scenarios, a topic that has not been extensively explored. The proposed STRN model, with its performance and robustness, provides a new scheme for improving the level of traffic safety and promoting intelligent autonomous vehicle decision system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
以won发布了新的文献求助10
4秒前
Orange应助摆烂ing采纳,获得10
4秒前
12秒前
16秒前
摆烂ing完成签到,获得积分10
17秒前
Yantuobio完成签到,获得积分10
43秒前
畅快甜瓜发布了新的文献求助10
45秒前
满意的伊完成签到,获得积分10
45秒前
年鱼精完成签到 ,获得积分10
47秒前
华仔应助读书的时候采纳,获得10
49秒前
53秒前
懵懂的莛完成签到,获得积分10
54秒前
yydd发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Lucas应助huahuahahajiu采纳,获得10
1分钟前
英勇滑板发布了新的文献求助10
1分钟前
1分钟前
香蕉觅云应助自然狗采纳,获得10
1分钟前
yydd完成签到,获得积分20
1分钟前
1分钟前
痞老板死磕蟹黄堡完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
竹修完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
赵芳完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ZXneuro完成签到,获得积分10
2分钟前
yx发布了新的文献求助10
2分钟前
SciGPT应助信陵君无忌采纳,获得10
2分钟前
2分钟前
yx完成签到,获得积分10
2分钟前
机智元珊完成签到,获得积分10
3分钟前
ding应助畅快甜瓜采纳,获得10
3分钟前
狐尾完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731901
求助须知:如何正确求助?哪些是违规求助? 5333980
关于积分的说明 15321767
捐赠科研通 4877719
什么是DOI,文献DOI怎么找? 2620550
邀请新用户注册赠送积分活动 1569861
关于科研通互助平台的介绍 1526352