Incorporating safety field theory into interactive trajectory prediction between VRU and vehicle: An integrated spatial–temporal and risk-aware model

弹道 领域(数学) 毒物控制 工程类 主动安全 计算机科学 汽车工程 医疗急救 医学 数学 物理 天文 纯数学
作者
Dianchen Zhu,Zheyan Fan,Wei Ma,Xuxin Zhang,Ho-Yin Chan,Mingming Zhao
出处
期刊:Traffic Injury Prevention [Informa]
卷期号:: 1-10
标识
DOI:10.1080/15389588.2024.2443008
摘要

Intersections represent critical points where conflicts between vulnerable road users (VRUs) and vehicles often occur, posing significant safety challenges globally. Despite efforts to mitigate heterogeneous traffic individual conflict, the accurate trajectory prediction of VRU-vehicle interactions remains elusive due to asymmetric information, unequal risks, and uncertainties in decision-making behaviors. Most existing trajectory prediction models predominantly focus on either VRUs or vehicles, neglecting the complex mechanisms of interactions between heterogeneous traffic agents. This article proposes a trajectory prediction model that incorporates spatial-temporal characteristics and security risk awareness as an alternative approach to these challenges. The proposed spatial-temporal risk network (STRN) combines the awareness of time, space, and quantified safety risk to improve the performance of this model. First, the safety potential field theory is used to quantify and label the risks in the VRU-vehicle interaction scenario, and the effect of conflict risk on the agents' motion trajectory is considered. Second, the spatial constraint features of agent movement are extracted from the spatial dimension. Third, the change characteristics of the agent's motion trajectory over time are extracted from time dimension. The experimental results show that the model can effectively identify the motion trajectories under the complex interaction between VRUs and vehicles. The ablation experiments confirm that the integration of spatial-temporal risk dimensions positively impacts the accuracy of interaction prediction. The model shows great robustness in different scenario transferability tests. This study revisits the challenge of predicting interaction trajectories of heterogeneous objects in unsignalized intersection scenarios, a topic that has not been extensively explored. The proposed STRN model, with its performance and robustness, provides a new scheme for improving the level of traffic safety and promoting intelligent autonomous vehicle decision system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈喽酷狗发布了新的文献求助10
刚刚
刚刚
素和姣姣完成签到,获得积分10
刚刚
1秒前
1秒前
晾猫人发布了新的文献求助10
1秒前
chshj发布了新的文献求助10
1秒前
2秒前
莫愁完成签到,获得积分10
2秒前
imessi发布了新的文献求助10
3秒前
4秒前
好的发布了新的文献求助10
4秒前
直率沂发布了新的文献求助30
5秒前
晾猫人完成签到,获得积分10
6秒前
诚心笑晴关注了科研通微信公众号
6秒前
情怀应助ziyiziyi采纳,获得10
6秒前
6秒前
6秒前
JiangXueBa发布了新的文献求助10
7秒前
sdd发布了新的文献求助10
7秒前
8秒前
冷笑完成签到,获得积分10
8秒前
Akim应助dorr采纳,获得10
9秒前
李晨阳发布了新的文献求助10
10秒前
澍L发布了新的文献求助20
11秒前
和谐一一发布了新的文献求助10
11秒前
11秒前
好的完成签到,获得积分10
12秒前
wnagjianquan发布了新的文献求助30
13秒前
搜索v完成签到,获得积分10
13秒前
安详水壶发布了新的文献求助10
15秒前
清如许发布了新的文献求助10
15秒前
16秒前
16秒前
魁梧的蜜蜂完成签到,获得积分10
16秒前
醉熏的以云完成签到 ,获得积分10
18秒前
18秒前
归海含烟完成签到,获得积分10
19秒前
打打应助Tophet采纳,获得10
20秒前
饱满初雪发布了新的文献求助10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461594
求助须知:如何正确求助?哪些是违规求助? 3055276
关于积分的说明 9047362
捐赠科研通 2745162
什么是DOI,文献DOI怎么找? 1505991
科研通“疑难数据库(出版商)”最低求助积分说明 695963
邀请新用户注册赠送积分活动 695363