Incorporating safety field theory into interactive trajectory prediction between VRU and vehicle: An integrated spatial–temporal and risk-aware model

弹道 领域(数学) 毒物控制 工程类 主动安全 计算机科学 汽车工程 医疗急救 医学 数学 物理 天文 纯数学
作者
Dianchen Zhu,Zheyan Fan,Wei Ma,Xuxin Zhang,Ho-Yin Chan,Mingming Zhao
出处
期刊:Traffic Injury Prevention [Taylor & Francis]
卷期号:: 1-10
标识
DOI:10.1080/15389588.2024.2443008
摘要

Intersections represent critical points where conflicts between vulnerable road users (VRUs) and vehicles often occur, posing significant safety challenges globally. Despite efforts to mitigate heterogeneous traffic individual conflict, the accurate trajectory prediction of VRU-vehicle interactions remains elusive due to asymmetric information, unequal risks, and uncertainties in decision-making behaviors. Most existing trajectory prediction models predominantly focus on either VRUs or vehicles, neglecting the complex mechanisms of interactions between heterogeneous traffic agents. This article proposes a trajectory prediction model that incorporates spatial-temporal characteristics and security risk awareness as an alternative approach to these challenges. The proposed spatial-temporal risk network (STRN) combines the awareness of time, space, and quantified safety risk to improve the performance of this model. First, the safety potential field theory is used to quantify and label the risks in the VRU-vehicle interaction scenario, and the effect of conflict risk on the agents' motion trajectory is considered. Second, the spatial constraint features of agent movement are extracted from the spatial dimension. Third, the change characteristics of the agent's motion trajectory over time are extracted from time dimension. The experimental results show that the model can effectively identify the motion trajectories under the complex interaction between VRUs and vehicles. The ablation experiments confirm that the integration of spatial-temporal risk dimensions positively impacts the accuracy of interaction prediction. The model shows great robustness in different scenario transferability tests. This study revisits the challenge of predicting interaction trajectories of heterogeneous objects in unsignalized intersection scenarios, a topic that has not been extensively explored. The proposed STRN model, with its performance and robustness, provides a new scheme for improving the level of traffic safety and promoting intelligent autonomous vehicle decision system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yoke完成签到,获得积分10
2秒前
叽里呱啦完成签到 ,获得积分10
2秒前
ciallo发布了新的文献求助10
2秒前
夏晴晴完成签到,获得积分10
2秒前
阿九发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
典雅的静发布了新的文献求助10
3秒前
机智马里奥完成签到 ,获得积分10
3秒前
爆米花应助77采纳,获得10
3秒前
4秒前
JHL发布了新的文献求助10
4秒前
社长完成签到,获得积分10
4秒前
易方完成签到,获得积分10
4秒前
1230完成签到 ,获得积分10
4秒前
4秒前
呆萌滑板完成签到 ,获得积分10
5秒前
redflower完成签到,获得积分10
5秒前
5秒前
小池由希完成签到 ,获得积分10
6秒前
泡芙发布了新的文献求助10
6秒前
进击的斑马鱼完成签到,获得积分10
6秒前
背后城发布了新的文献求助30
6秒前
新司机发布了新的文献求助10
7秒前
7秒前
慕青应助qsxy采纳,获得10
7秒前
水濑心源完成签到,获得积分10
7秒前
LUMOS完成签到,获得积分10
7秒前
TJ完成签到,获得积分10
7秒前
8秒前
老陈发布了新的文献求助10
8秒前
德玛西亚发布了新的文献求助10
8秒前
9秒前
9秒前
哦豁完成签到,获得积分10
9秒前
10秒前
甜美无剑应助tangz采纳,获得10
10秒前
AaronDP完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118