ESVT: Event-based Streaming Vision Transformer for Challenging Object Detection

计算机科学 目标检测 人工智能 计算机视觉 深度学习 杠杆(统计) 事件(粒子物理) 模式识别(心理学) 物理 量子力学
作者
Shilong Jing,Guangsha Guo,Xianda Xu,Yuchen Zhao,Hechong Wang,Hengyi Lv,Feng Yang,Yisa Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:63: 1-13
标识
DOI:10.1109/tgrs.2025.3527474
摘要

Object detection is a crucial task in the field of remote sensing. Currently, frame-based algorithms have demonstrated impressive performance. However, research on remote sensing applying event cameras has not yet been conducted. Meanwhile, there are still three issues to address: 1) Remote sensing targets are often disrupted by complex backgrounds, resulting in poor detection performance, especially in extremely challenging environments (e.g., low-light, motion blur, and occlusion scenarios). 2) Mainstream deep learning neural networks primarily employ discrete random sampling training strategies, which limits the system to leverage continuous temporal information. 3) The distribution shift problem arising from uneven data in streaming training poses challenges for temporal object detection. In this work, we provide the Remote Sensing Event-based Object Detection Dataset (RSEOD), which is the first remote sensing dataset utilizing event cameras while including various intractable scenarios, providing a novel perspective for object detection in challenging scenarios. Additionally, we innovatively propose an event-based streaming training strategy that utilizes asynchronous event streams to address detection challenges caused by prolonged occlusion and out-of-focus. Moreover, we introduce a reversible normalization criterion (RevNorm) to eliminate non-stationary information in temporal data, proposing a Streaming Bidirectional Feature Pyramid Network (SBFPN) to facilitate recursive data transmission along the temporal dimension. Extensive experiments on the RSEOD Dataset demonstrate that our method achieves 38.1% mAP@0.5:0.95 and 55.8% mAP@0.5, outperforming all other state-of-the-art object detection approaches (e.g., YOLOv8, YOLOv10, YOLOv11, DINO, RTDETR, RTDETRv2, SODFormer). The dataset and code are released at https://github.com/Jushl/ESVT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小寒0812完成签到,获得积分10
刚刚
刚刚
彭于彦祖应助202211010668采纳,获得20
刚刚
2秒前
2秒前
脑洞疼应助好旺采纳,获得10
3秒前
动听的笑南完成签到,获得积分10
3秒前
汉堡包应助神勇的罡采纳,获得10
3秒前
3秒前
范范发布了新的文献求助10
3秒前
狄孱完成签到,获得积分10
4秒前
Kenina完成签到,获得积分10
4秒前
材料人发布了新的文献求助10
6秒前
6秒前
星辰大海应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得30
7秒前
小熊丢了发布了新的文献求助10
7秒前
永不言弃完成签到 ,获得积分10
7秒前
Thien应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
Lars汉堡应助科研通管家采纳,获得10
7秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
8秒前
Thien应助科研通管家采纳,获得10
8秒前
hannahwu完成签到,获得积分20
8秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725921
求助须知:如何正确求助?哪些是违规求助? 3271014
关于积分的说明 9969976
捐赠科研通 2986468
什么是DOI,文献DOI怎么找? 1638241
邀请新用户注册赠送积分活动 778036
科研通“疑难数据库(出版商)”最低求助积分说明 747383