ESVT: Event-based Streaming Vision Transformer for Challenging Object Detection

计算机科学 目标检测 人工智能 计算机视觉 深度学习 杠杆(统计) 事件(粒子物理) 模式识别(心理学) 物理 量子力学
作者
Shilong Jing,Guangsha Guo,Xianda Xu,Yuchen Zhao,Hechong Wang,Hengyi Lv,Feng Yang,Yisa Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:63: 1-13
标识
DOI:10.1109/tgrs.2025.3527474
摘要

Object detection is a crucial task in the field of remote sensing. Currently, frame-based algorithms have demonstrated impressive performance. However, research on remote sensing applying event cameras has not yet been conducted. Meanwhile, there are still three issues to address: 1) Remote sensing targets are often disrupted by complex backgrounds, resulting in poor detection performance, especially in extremely challenging environments (e.g., low-light, motion blur, and occlusion scenarios). 2) Mainstream deep learning neural networks primarily employ discrete random sampling training strategies, which limits the system to leverage continuous temporal information. 3) The distribution shift problem arising from uneven data in streaming training poses challenges for temporal object detection. In this work, we provide the Remote Sensing Event-based Object Detection Dataset (RSEOD), which is the first remote sensing dataset utilizing event cameras while including various intractable scenarios, providing a novel perspective for object detection in challenging scenarios. Additionally, we innovatively propose an event-based streaming training strategy that utilizes asynchronous event streams to address detection challenges caused by prolonged occlusion and out-of-focus. Moreover, we introduce a reversible normalization criterion (RevNorm) to eliminate non-stationary information in temporal data, proposing a Streaming Bidirectional Feature Pyramid Network (SBFPN) to facilitate recursive data transmission along the temporal dimension. Extensive experiments on the RSEOD Dataset demonstrate that our method achieves 38.1% mAP@0.5:0.95 and 55.8% mAP@0.5, outperforming all other state-of-the-art object detection approaches (e.g., YOLOv8, YOLOv10, YOLOv11, DINO, RTDETR, RTDETRv2, SODFormer). The dataset and code are released at https://github.com/Jushl/ESVT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助草莓味的榴莲采纳,获得10
刚刚
李w发布了新的文献求助10
1秒前
务实的奇迹完成签到 ,获得积分10
1秒前
清茶韵心发布了新的文献求助10
1秒前
安雯完成签到,获得积分20
2秒前
2秒前
zzc张晨发布了新的文献求助50
2秒前
3秒前
3秒前
徐哈哈完成签到,获得积分10
4秒前
霜降发布了新的文献求助10
4秒前
科研通AI2S应助H_Hou采纳,获得10
4秒前
cc发布了新的文献求助10
4秒前
妙妙完成签到,获得积分10
5秒前
安雯发布了新的文献求助30
5秒前
我是老大应助Vi采纳,获得10
6秒前
6秒前
可爱以松发布了新的文献求助10
7秒前
研友_5Zl9D8发布了新的文献求助10
7秒前
今后应助玖月采纳,获得10
7秒前
科研通AI5应助勤奋的风华采纳,获得10
8秒前
倪好发布了新的文献求助10
8秒前
但大图完成签到 ,获得积分10
8秒前
伊yan发布了新的文献求助10
9秒前
雨碎寒江发布了新的文献求助10
10秒前
淡定小白菜完成签到,获得积分10
12秒前
雷Lei发布了新的文献求助20
13秒前
Jasper应助Darknewnew采纳,获得10
14秒前
wy.he应助李w采纳,获得10
15秒前
ychao应助李w采纳,获得10
15秒前
桐桐应助清茶韵心采纳,获得10
15秒前
16秒前
yyz发布了新的文献求助10
16秒前
16秒前
霜降完成签到,获得积分20
17秒前
Ava应助June采纳,获得10
17秒前
欢呼的书南完成签到,获得积分10
18秒前
徐嘿嘿完成签到,获得积分20
19秒前
19秒前
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490736
求助须知:如何正确求助?哪些是违规求助? 3077538
关于积分的说明 9149233
捐赠科研通 2769733
什么是DOI,文献DOI怎么找? 1519934
邀请新用户注册赠送积分活动 704390
科研通“疑难数据库(出版商)”最低求助积分说明 702148