Accurate binding energy database based on first-principles calculations for Monte Carlo simulations of aluminum-based alloy

材料科学 蒙特卡罗方法 合金 结合能 统计物理学 冶金 原子物理学 物理 统计 数学
作者
Jia Ning Zhao,Kenjiro Sugio,Yutaro Maeda,Sen Zhai,Gen Sasaki
出处
期刊:Modelling and Simulation in Materials Science and Engineering [IOP Publishing]
标识
DOI:10.1088/1361-651x/ada817
摘要

Abstract The evaluation of binding energy in alloys is crucial for assessing structural stability and predicting new materials in design. Thus, calculating binding energy has become a central focus. Empirical potential functions provide computational efficiency and the ability to explore large-scale material systems without the need for high-performance computing resources. However, limitations such as reduced precision and restricted applicability to novel materials remain a challenge. To address this issue, a new method based on first-principles calculations is introduced to accurately determine the binding energy in vacancy-containing Al alloys. The study focuses on four binary alloys: Al-Si, Al-Zr, Al-Mg, and Al-Ti. The root mean square error is employed to evaluate the quality of this novel binding energy database, demonstrating that it achieves precision comparable to first-principles calculations within Monte Carlo (MC) simulations. The results confirm that this database successfully replicates the aging process in Al alloys while offering superior computational speed compared to first-principles calculations without compromising accuracy. This advancement significantly enhances the precision of atomic modeling, improving both predictive accuracy and computational efficiency for novel materials. Furthermore, this potential opens the door for broader applications in alloy design, paving the way for the discovery of new materials with optimized properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cholly发布了新的文献求助10
1秒前
qise发布了新的文献求助20
1秒前
1秒前
碧蓝世界完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
4秒前
田様应助cslghe采纳,获得10
4秒前
5秒前
5秒前
7秒前
凉薄少年应助复杂采纳,获得10
7秒前
chong0919发布了新的文献求助10
7秒前
8秒前
十六发布了新的文献求助10
9秒前
天天快乐应助壮观的翠芙采纳,获得10
9秒前
为心所往完成签到,获得积分10
10秒前
拔丝香芋发布了新的文献求助30
11秒前
KINDMAGIC完成签到,获得积分10
12秒前
sevenvictory应助LiShin采纳,获得10
13秒前
nenoaowu发布了新的文献求助30
13秒前
学术老6完成签到,获得积分10
13秒前
14秒前
王伟发布了新的文献求助10
15秒前
柯一一应助Jonathan采纳,获得10
15秒前
SYLH应助hahaer采纳,获得10
16秒前
NexusExplorer应助chong0919采纳,获得10
17秒前
17秒前
凉薄少年应助LiShin采纳,获得10
17秒前
18秒前
蓝莓酥study完成签到,获得积分10
19秒前
夏定海完成签到,获得积分10
19秒前
19秒前
Mt完成签到,获得积分10
20秒前
lzq发布了新的文献求助10
21秒前
23秒前
23秒前
公孙朝雨完成签到 ,获得积分10
23秒前
友好旭尧发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511990
关于积分的说明 11161200
捐赠科研通 3246780
什么是DOI,文献DOI怎么找? 1793495
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420