Semi-Patchcore: A Novel Two-Staged Method for Semi-supervised Anomaly Detection and Localization

计算机科学 人工智能 一般化 半监督学习 异常检测 管道(软件) 机器学习 分割 模式识别(心理学) 光学(聚焦) 监督学习 深度学习 标记数据 人工神经网络 数学 数学分析 物理 光学 程序设计语言
作者
S. Xie,Xiaojun Wu,Michael Yu Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tim.2025.3527588
摘要

Product surface defect detection is a crucial technology in industrial production. The adoption of deep learning-based algorithms for inspecting product surface defects has been steadily increasing due to their superior detection capability and enhanced generalization performance. However, current deep learning-based algorithms primarily focus on supervised approaches, which can be inefficient and costly. In this paper, we present a novel pipeline for semi-supervised defect detection called Semi-Patchcore, which achieves comparable defect detection performance to weakly supervised methods using only defect-free and unlabeled samples for training. Initially, we establish a memory bank using labeled defect-free training dataset. Subsequently, we compare the unlabeled mixed data with the features in the memory bank to derive pseudo class labels. Finally, we train a segmentation network based on DeepLabV3+ using the pseudo classification labels. To evaluate the performance of our approach, we conduct comparative experiments on four public datasets: MVTecAD dataset, DAGM dataset, BTAD dataset, and KSDD2 dataset. The experimental results demonstrate that our method outperforms state-of-the-art semi-supervised or unsupervised methods in terms of superiority and generalization. Additionally, we explore the impact of label issues on supervised learning observed in this study. Our method also surpasses some weakly supervised segmentation algorithms, showcasing its effectiveness in industrial defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
影子发布了新的文献求助10
刚刚
西扬发布了新的文献求助10
1秒前
Andrew完成签到,获得积分0
1秒前
LHL发布了新的文献求助10
1秒前
Xorgan发布了新的文献求助10
2秒前
溆玉碎兰笑完成签到 ,获得积分10
2秒前
3秒前
樂楽完成签到,获得积分10
3秒前
4秒前
忧郁小刺猬完成签到,获得积分10
4秒前
5秒前
6秒前
MA完成签到,获得积分20
6秒前
沛蓝完成签到,获得积分10
9秒前
小马甲应助nan采纳,获得10
9秒前
Lucas应助年轻的冰蓝采纳,获得10
9秒前
FashionBoy应助西瓜汁采纳,获得30
9秒前
苗条的天曼完成签到 ,获得积分10
10秒前
科研助手6应助真的无语采纳,获得10
11秒前
Hello应助qaz123采纳,获得10
11秒前
8R60d8应助风小禾采纳,获得10
12秒前
好好完成签到,获得积分10
12秒前
12秒前
小庾儿完成签到 ,获得积分10
12秒前
大模型应助武当王也采纳,获得30
13秒前
在水一方应助cling12采纳,获得10
13秒前
西扬完成签到,获得积分10
13秒前
14秒前
枫飞完成签到,获得积分10
14秒前
15秒前
ys20001发布了新的文献求助10
15秒前
田様应助wxy采纳,获得10
16秒前
17秒前
赖向珊应助冰皮绒球采纳,获得50
17秒前
枫飞发布了新的文献求助10
18秒前
Wone3完成签到 ,获得积分10
18秒前
didi完成签到,获得积分10
18秒前
沈书应助小斌采纳,获得10
18秒前
林先生完成签到,获得积分10
19秒前
邱威发布了新的文献求助10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767970
求助须知:如何正确求助?哪些是违规求助? 3312719
关于积分的说明 10164569
捐赠科研通 3027847
什么是DOI,文献DOI怎么找? 1661721
邀请新用户注册赠送积分活动 794252
科研通“疑难数据库(出版商)”最低求助积分说明 756036