Activation of Adenosine Triphosphate-Gated Purinergic 2 Receptor Channels by Transient Receptor Potential Vanilloid Subtype 4 in Cough Hypersensitivity

瞬时受体电位通道 嘌呤能受体 嘌呤能信号 化学 三磷酸腺苷 药理学 腺苷受体 腺苷 受体 医学 神经科学 生物化学 生物 兴奋剂
作者
Wanzhen Li,Shengyuan Wang,Tongyangzi Zhang,Yiqing Zhu,Li Yu,Xianghuai Xu
出处
期刊:Biomolecules [Multidisciplinary Digital Publishing Institute]
卷期号:15 (2): 285-285
标识
DOI:10.3390/biom15020285
摘要

Background: Transient receptor potential vanilloid subtype 4 (TRPV4) is a Ca2+-permeable non-selective cation channel that is involved in the development of cough hypersensitivity. Purinergic 2 receptors (P2X) belong to a class of adenosine triphosphate (ATP)-gated non-selective cation channels that also play an important role in cough hypersensitivity. Nevertheless, little is known about the interaction between them for cough hypersensitivity. The present study was designed to clarify the roles of TRPV4 and ATP-P2X receptors in cough hypersensitivity, and to explore the possible involvement of ATP-P2X receptors in the development of cough hypersensitivity mediated by TRPV4. Design and Method: This study aims to establish a guinea pig model of citric acid-induced enhanced cough to confirm the effects of the TRPV4-mediated purinergic signaling pathway on cough sensitivity by testing the number of coughs, the release of ATP, and the expressions of P2X and TRPV4 receptors in the tracheal carina and vagal ganglion; recording the activity of cellular currents with the whole-cell patch clamp technique; and detecting changes in intracellular calcium flow in the vagus nerve cells. Results: The number of coughs in the TRPV4 agonist GSK1016790A-treated control group was elevated compared with that in the control group, whereas the number of coughs in the TRPV4 antagonist HC067047-treated model group was significantly reduced compared with that in the chronic cough group. When the individuals in the chronic cough group were treated with A317491, PSB12062, and A804598 (P2X3,4,7 antagonists), the number of coughs was significantly decreased. This suggests that TRPV4 and P2X3, P2X4, and P2X7 receptors have an effect on cough hyper-responsiveness in guinea pigs with chronic cough. Enzyme-linked immunosorbent assay results suggested that TRPV4 antagonist and P2X3,4,7 antagonist could differentially reduce the levels of inflammatory factor SP and CGRP in alveolar lavage fluid, and TRPV4 antagonist could reduce the ATP content in the alveolar lavage fluid of guinea pigs in the model. Western blot and immunohistochemistry results showed that, in the tracheal carina and vagal ganglion, the TRPV4 and P2X3,4,7 expression was elevated in the chronic cough group compared with the control group, and could be significantly inhibited by TRPV4 antagonist. Vagus ganglion neurons were isolated, cultured, identified, and subjected to whole-cell membrane clamp assay. When ATP was given extracellularly, a significant inward current was recorded in the examined cells of individuals in the chronic cough and control groups, and the inward current induced by ATP was higher in the chronic cough group relative to the control group. This inward current (IATP) was differentially blocked by P2X3, P2X4, and P2X7 antagonists. Further studies revealed that TRPV4 agonists potentiated ATP-activated currents, and the potentiated currents could still be inhibited by P2X3, P2X4, and P2X7 receptor antagonists, whereas TRPV4 inhibitors partially blocked ATP-activated currents. It is suggested that TRPV4 affects P2X3, P2X4, and P2X7 receptor-mediated ATP-activated currents. Calcium imaging also showed that TRPV4 agonists induced different degrees of calcium inward currents in the vagal neurons of the chronic cough and the control group, and the calcium inward currents were more significant in the model group. Conclusions: The TRPV4-mediated purinergic signaling pathway was identified to be involved in the development of cough hypersensitivity in guinea pigs with chronic cough; i.e., TRPV4 can lead to the release of airway epithelial ATP, which can stimulate P2X receptors on the cough receptor, and further activate the sensory afferent nerves in the peripheral airway, leading to increased cough sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liang19640908完成签到 ,获得积分10
刚刚
奋斗的雪曼完成签到 ,获得积分10
6秒前
粗心的飞槐完成签到 ,获得积分10
6秒前
LELE完成签到 ,获得积分10
13秒前
了0完成签到 ,获得积分10
14秒前
apocalypse完成签到 ,获得积分10
19秒前
guhao完成签到 ,获得积分10
20秒前
指导灰完成签到 ,获得积分10
20秒前
善良的火完成签到 ,获得积分10
31秒前
优雅夕阳完成签到 ,获得积分10
33秒前
Jasper应助光亮的自行车采纳,获得10
33秒前
miki完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
35秒前
糖宝完成签到 ,获得积分10
42秒前
KX2024完成签到,获得积分10
45秒前
松松发布了新的文献求助20
48秒前
nusiew完成签到,获得积分10
48秒前
huiluowork完成签到 ,获得积分10
49秒前
陶醉的翠霜完成签到 ,获得积分10
49秒前
49秒前
冷静如松完成签到 ,获得积分10
56秒前
58秒前
浮云完成签到 ,获得积分10
59秒前
屈岂愈完成签到,获得积分10
1分钟前
1分钟前
Pupil完成签到,获得积分10
1分钟前
偏偏意气用事完成签到,获得积分10
1分钟前
安安完成签到,获得积分10
1分钟前
cttc完成签到,获得积分10
1分钟前
Chnimike完成签到 ,获得积分10
1分钟前
1分钟前
红茸茸羊完成签到 ,获得积分10
1分钟前
年轻千愁完成签到 ,获得积分10
1分钟前
liu完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Wanyeweiyu完成签到,获得积分10
1分钟前
Fury完成签到 ,获得积分10
1分钟前
风中幻梦完成签到,获得积分10
1分钟前
bigpluto完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022