Activation of Adenosine Triphosphate-Gated Purinergic 2 Receptor Channels by Transient Receptor Potential Vanilloid Subtype 4 in Cough Hypersensitivity

瞬时受体电位通道 嘌呤能受体 嘌呤能信号 化学 三磷酸腺苷 药理学 腺苷受体 腺苷 受体 医学 神经科学 生物化学 生物 兴奋剂
作者
Wanzhen Li,Shengyuan Wang,Tongyangzi Zhang,Yiqing Zhu,Li Yu,Xianghuai Xu
出处
期刊:Biomolecules [MDPI AG]
卷期号:15 (2): 285-285
标识
DOI:10.3390/biom15020285
摘要

Background: Transient receptor potential vanilloid subtype 4 (TRPV4) is a Ca2+-permeable non-selective cation channel that is involved in the development of cough hypersensitivity. Purinergic 2 receptors (P2X) belong to a class of adenosine triphosphate (ATP)-gated non-selective cation channels that also play an important role in cough hypersensitivity. Nevertheless, little is known about the interaction between them for cough hypersensitivity. The present study was designed to clarify the roles of TRPV4 and ATP-P2X receptors in cough hypersensitivity, and to explore the possible involvement of ATP-P2X receptors in the development of cough hypersensitivity mediated by TRPV4. Design and Method: This study aims to establish a guinea pig model of citric acid-induced enhanced cough to confirm the effects of the TRPV4-mediated purinergic signaling pathway on cough sensitivity by testing the number of coughs, the release of ATP, and the expressions of P2X and TRPV4 receptors in the tracheal carina and vagal ganglion; recording the activity of cellular currents with the whole-cell patch clamp technique; and detecting changes in intracellular calcium flow in the vagus nerve cells. Results: The number of coughs in the TRPV4 agonist GSK1016790A-treated control group was elevated compared with that in the control group, whereas the number of coughs in the TRPV4 antagonist HC067047-treated model group was significantly reduced compared with that in the chronic cough group. When the individuals in the chronic cough group were treated with A317491, PSB12062, and A804598 (P2X3,4,7 antagonists), the number of coughs was significantly decreased. This suggests that TRPV4 and P2X3, P2X4, and P2X7 receptors have an effect on cough hyper-responsiveness in guinea pigs with chronic cough. Enzyme-linked immunosorbent assay results suggested that TRPV4 antagonist and P2X3,4,7 antagonist could differentially reduce the levels of inflammatory factor SP and CGRP in alveolar lavage fluid, and TRPV4 antagonist could reduce the ATP content in the alveolar lavage fluid of guinea pigs in the model. Western blot and immunohistochemistry results showed that, in the tracheal carina and vagal ganglion, the TRPV4 and P2X3,4,7 expression was elevated in the chronic cough group compared with the control group, and could be significantly inhibited by TRPV4 antagonist. Vagus ganglion neurons were isolated, cultured, identified, and subjected to whole-cell membrane clamp assay. When ATP was given extracellularly, a significant inward current was recorded in the examined cells of individuals in the chronic cough and control groups, and the inward current induced by ATP was higher in the chronic cough group relative to the control group. This inward current (IATP) was differentially blocked by P2X3, P2X4, and P2X7 antagonists. Further studies revealed that TRPV4 agonists potentiated ATP-activated currents, and the potentiated currents could still be inhibited by P2X3, P2X4, and P2X7 receptor antagonists, whereas TRPV4 inhibitors partially blocked ATP-activated currents. It is suggested that TRPV4 affects P2X3, P2X4, and P2X7 receptor-mediated ATP-activated currents. Calcium imaging also showed that TRPV4 agonists induced different degrees of calcium inward currents in the vagal neurons of the chronic cough and the control group, and the calcium inward currents were more significant in the model group. Conclusions: The TRPV4-mediated purinergic signaling pathway was identified to be involved in the development of cough hypersensitivity in guinea pigs with chronic cough; i.e., TRPV4 can lead to the release of airway epithelial ATP, which can stimulate P2X receptors on the cough receptor, and further activate the sensory afferent nerves in the peripheral airway, leading to increased cough sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶明杰完成签到 ,获得积分10
6秒前
白昼の月完成签到 ,获得积分0
8秒前
种下梧桐树完成签到 ,获得积分10
9秒前
22秒前
钱念波发布了新的文献求助150
28秒前
钱念波完成签到,获得积分10
41秒前
欢呼的茗茗完成签到 ,获得积分10
45秒前
一如完成签到 ,获得积分10
45秒前
46秒前
Havibi完成签到 ,获得积分10
48秒前
hhhhh完成签到 ,获得积分10
50秒前
woodheart发布了新的文献求助10
50秒前
槿一完成签到 ,获得积分10
1分钟前
yunt完成签到 ,获得积分10
1分钟前
LRR完成签到 ,获得积分10
1分钟前
aowulan完成签到 ,获得积分10
1分钟前
111完成签到 ,获得积分10
1分钟前
Nxxxxxx应助宝宝熊的熊宝宝采纳,获得10
1分钟前
DBP87弹完成签到 ,获得积分10
1分钟前
尘染完成签到 ,获得积分10
1分钟前
lyn完成签到,获得积分10
1分钟前
动人的诗霜完成签到 ,获得积分10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
LPPQBB应助科研通管家采纳,获得150
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
南山无梅落完成签到 ,获得积分10
1分钟前
Qian完成签到 ,获得积分10
2分钟前
风趣朝雪完成签到,获得积分10
2分钟前
C2完成签到 ,获得积分10
2分钟前
博弈完成签到 ,获得积分10
2分钟前
kk完成签到,获得积分10
2分钟前
吉吉完成签到,获得积分10
2分钟前
氟锑酸完成签到 ,获得积分10
2分钟前
凡凡完成签到,获得积分10
2分钟前
激流勇进wb完成签到 ,获得积分10
2分钟前
可爱的函函应助Beta2187采纳,获得30
3分钟前
Yasong完成签到 ,获得积分10
3分钟前
Wen929完成签到 ,获得积分10
3分钟前
12305014077完成签到 ,获得积分10
3分钟前
害羞的雁易完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293724
求助须知:如何正确求助?哪些是违规求助? 4443787
关于积分的说明 13831569
捐赠科研通 4327678
什么是DOI,文献DOI怎么找? 2375646
邀请新用户注册赠送积分活动 1370930
关于科研通互助平台的介绍 1335900