Liposomal-Based Nanoarchitectonics as Bispecific T Cell Engagers in Neuroblastoma Therapy

材料科学 纳米技术
作者
Jorge Parra‐Nieto,Laura Hidalgo,Marta Márquez-Cantudo,Javier García‐Castro,Diego Megı́as,Manuel Ramı́rez,Alejandro Baeza
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.5c00633
摘要

Neuroblastoma (NB) is an aggressive pediatric solid tumor that lacks efficient treatment. In the past few years, the use of engineered lymphocytes endowed with chimeric antigen receptors (CAR T), which improve their natural search and destroy skills against tumoral cells, has provided a highly valuable strategy to eradicate tumors in a specific and safe manner. Unfortunately, despite the excellent results achieved by these cell-based therapies in liquid tumors, their efficacy in the treatment of solid malignancies is usually modest due to the existence of several biological barriers which compromise their efficacy. Herein, a strategy to guide CAR T toward NB cells based on the use of nanometric bispecific T engagers (NBTEs) is presented. These novel bispecific nanoplatforms are based on liposomes and protocells doubly functionalized with synthetic targeting moieties (para-aminobenzylguanidine and fluorescein) able to selectively bind to membrane cell receptors of NB and anti-FITC CAR T, respectively. The binding process of NBTEs to NB cells was monitored by confocal fluorescence microscopy showing the excellent capacity of these nanodevices to place fluorescence labels on the surface of the malignant cells. Then, NB cells previously incubated in the presence of NBTEs were rapidly detected and destroyed by anti-FITC CAR T, which confirmed the excellent capacity of these nanoplatforms to improve the natural capacity of CAR T to eradicate malignant cells. Finally, the high versatility of the NBTE design and its easy-to-tune nature would allow their rapid application to different types of solid tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hanatae发布了新的文献求助10
刚刚
ID8完成签到,获得积分10
刚刚
东方三问完成签到,获得积分10
刚刚
积极的罡完成签到 ,获得积分10
刚刚
善学以致用应助高天雨采纳,获得10
1秒前
1秒前
幸福的小面包完成签到,获得积分10
1秒前
Jasper应助认真土豆采纳,获得10
1秒前
渝州人应助alan采纳,获得10
2秒前
2秒前
kkx发布了新的文献求助10
4秒前
研友_Z7Xvl8发布了新的文献求助10
4秒前
爱静静应助简单的安梦采纳,获得10
4秒前
5秒前
执玉笛完成签到,获得积分10
5秒前
6秒前
7秒前
海上溜冰发布了新的文献求助10
7秒前
蓝精灵发布了新的文献求助10
7秒前
8秒前
李健的小迷弟应助npknpk采纳,获得10
9秒前
10秒前
10秒前
12秒前
微笑的采蓝完成签到,获得积分10
12秒前
13秒前
爱刷牙的小熊完成签到 ,获得积分10
13秒前
蓝精灵完成签到,获得积分10
13秒前
13秒前
Hello应助甜蜜的水壶采纳,获得10
15秒前
15秒前
16秒前
16秒前
认真土豆发布了新的文献求助10
17秒前
高天雨发布了新的文献求助10
17秒前
17秒前
kean1943完成签到,获得积分10
17秒前
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555252
求助须知:如何正确求助?哪些是违规求助? 3130871
关于积分的说明 9389097
捐赠科研通 2830384
什么是DOI,文献DOI怎么找? 1555991
邀请新用户注册赠送积分活动 726370
科研通“疑难数据库(出版商)”最低求助积分说明 715737