🔥 科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。详情 📚 中科院2025期刊分区📊 已更新

Deep Learning Provides a New Magnetic Resonance Imaging-Based Prognostic Biomarker for Recurrence Prediction in High-Grade Serous Ovarian Cancer

医学 队列 磁共振成像 深度学习 浆液性液体 生物标志物 卵巢癌 肿瘤科 人工智能 内科学 癌症 机器学习 放射科 计算机科学 生物化学 化学
作者
Lili Liu,Haoming Wan,Li Liu,Jie Wang,Yibo Tang,Shaoguo Cui,Yongmei Li
出处
期刊:Diagnostics [MDPI AG]
卷期号:13 (4): 748-748 被引量:6
标识
DOI:10.3390/diagnostics13040748
摘要

This study aims to use a deep learning method to develop a signature extract from preoperative magnetic resonance imaging (MRI) and to evaluate its ability as a non-invasive recurrence risk prognostic marker in patients with advanced high-grade serous ovarian cancer (HGSOC). Our study comprises a total of 185 patients with pathologically confirmed HGSOC. A total of 185 patients were randomly assigned in a 5:3:2 ratio to a training cohort (n = 92), validation cohort 1 (n = 56), and validation cohort 2 (n = 37). We built a new deep learning network from 3839 preoperative MRI images (T2-weighted images and diffusion-weighted images) to extract HGSOC prognostic indicators. Following that, a fusion model including clinical and deep learning features is developed to predict patients' individual recurrence risk and 3-year recurrence likelihood. In the two validation cohorts, the consistency index of the fusion model was higher than both the deep learning model and the clinical feature model (0.752, 0.813 vs. 0.625, 0.600 vs. 0.505, 0.501). Among the three models, the fusion model had a higher AUC than either the deep learning model or the clinical model in validation cohorts 1 or 2 (AUC = was 0.986, 0.961 vs. 0.706, 0.676/0.506, 0.506). Using the DeLong method, the difference between them was statistically significant (p < 0.05). The Kaplan-Meier analysis distinguished two patient groups with high and low recurrence risk (p = 0.0008 and 0.0035, respectively). Deep learning may be a low-cost, non-invasive method for predicting risk for advanced HGSOC recurrence. Deep learning based on multi-sequence MRI serves as a prognostic biomarker for advanced HGSOC, which provides a preoperative model for predicting recurrence in HGSOC. Additionally, using the fusion model as a new prognostic analysis means that can use MRI data can be used without the need to follow-up the prognostic biomarker.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
xyy发布了新的文献求助10
3秒前
科研小小菜鸟完成签到,获得积分10
4秒前
lihuachen发布了新的文献求助10
4秒前
4秒前
4秒前
希望天下0贩的0应助vv采纳,获得10
5秒前
卌卌发布了新的文献求助10
7秒前
8秒前
8秒前
风中的安珊完成签到,获得积分10
11秒前
隐形曼青应助海绵宝宝采纳,获得10
11秒前
11秒前
11秒前
12秒前
14秒前
快哒哒哒完成签到,获得积分10
14秒前
14秒前
乐乐应助认真的忆文采纳,获得10
15秒前
HM发布了新的文献求助10
18秒前
ha发布了新的文献求助10
18秒前
因垂丝汀发布了新的文献求助10
20秒前
21秒前
21秒前
田様应助不将就采纳,获得10
22秒前
橙子橙子橙子完成签到,获得积分10
22秒前
光亮幻然发布了新的文献求助10
24秒前
liuhui完成签到 ,获得积分10
26秒前
土豆发布了新的文献求助10
27秒前
白河完成签到,获得积分10
29秒前
29秒前
小蘑菇应助zcl采纳,获得10
34秒前
爆米花应助ardejiang采纳,获得10
34秒前
风中珩完成签到,获得积分10
35秒前
不将就发布了新的文献求助10
36秒前
小张在努力完成签到,获得积分10
37秒前
37秒前
LIO完成签到,获得积分10
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
EEG in clinical practice 2nd edition 1994 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Barth, Derrida and the Language of Theology 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 化学工程 复合材料 基因 遗传学 催化作用 物理化学 细胞生物学 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3604813
求助须知:如何正确求助?哪些是违规求助? 3172930
关于积分的说明 9576288
捐赠科研通 2879052
什么是DOI,文献DOI怎么找? 1581248
邀请新用户注册赠送积分活动 743569
科研通“疑难数据库(出版商)”最低求助积分说明 725997