阳极
单层
材料科学
扩散
锂(药物)
离子
离子键合
吸附
化学物理
化学工程
化学
纳米技术
热力学
物理化学
物理
有机化学
工程类
电极
医学
内分泌学
作者
Qiang Gao,Xiao-Juan Ye,Chun-Sheng Liu
摘要
High specific capacity and fast charge/discharge rate are important indicators for the development of next-generation ion batteries. Compared with conventional monovalent ion batteries like lithium-ion batteries and sodium-ion batteries, multivalent ion batteries have attracted extensive attention owing to their high energy densities. Here, we systematically explore the interactions between Mg atoms and α-beryllene monolayers by means of density functional theory calculations. Mg atoms can be adsorbed stably on α-beryllene monolayers with the adsorption energy of -0.24 eV. The low diffusion energy barriers (0.099/0.101 eV) indicate the rapid mobility of Mg during the charge/discharge process. Moreover, the α-beryllene monolayer exhibits an ultra-high theoretical specific capacity of 5956 mA h g-1 for Mg, a low average open-circuit voltage of 0.24 V, and a tiny volume change of -1.08%. Finally, the constructed h-BN/α-beryllene heterostructure shows that h-BN can serve as a protective cover to preserve pristine α-beryllene in respect of metallicity, Mg adsorption capability, and fast ionic mobility. The above mentioned outstanding results make α-beryllene a promising anode material for magnesium-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI