Using Trial and Observational Data to Assess Effectiveness: Trial Emulation, Transportability, Benchmarking, and Joint Analysis

观察研究 标杆管理 随机对照试验 人口 仿真 因果推理 医学 心理学观察方法 医学物理学 计算机科学 心理学 外科 环境卫生 病理 业务 营销 社会心理学
作者
Issa J Dahabreh,Anthony Matthews,Jon A. Steingrimsson,Daniel O. Scharfstein,Elizabeth A. Stuart
出处
期刊:Epidemiologic Reviews [Oxford University Press]
被引量:12
标识
DOI:10.1093/epirev/mxac011
摘要

Abstract Comparisons between randomized trial analyses and observational analyses that attempt to address similar research questions have generated many controversies in epidemiology and the social sciences. There has been little consensus on when such comparisons are reasonable, what their implications are for the validity of observational analyses, or whether trial and observational analyses can be integrated to address effectiveness questions. Here, we consider methods for using observational analyses to complement trial analyses when assessing treatment effectiveness. First, we review the framework for designing observational analyses that emulate target trials and present an evidence map of its recent applications. We then review approaches for estimating the average treatment effect in the target population underlying the emulation: using observational analyses of the emulation data alone; and using transportability analyses to extend inferences from a trial to the target population. We explain how comparing treatment effect estimates from the emulation against those from the trial can provide evidence on whether observational analyses can be trusted to deliver valid estimates of effectiveness – a process we refer to as benchmarking – and, in some cases, allow the joint analysis of the trial and observational data. We illustrate different approaches using a simplified example of a pragmatic trial and its emulation in registry data. We conclude that synthesizing trial and observational data – in transportability, benchmarking, or joint analyses – can leverage their complementary strengths to enhance learning about comparative effectiveness, through a process combining quantitative methods and epidemiological judgements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
yolo完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
5秒前
白华苍松发布了新的文献求助20
5秒前
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
8秒前
慕昊强发布了新的文献求助10
9秒前
boyue发布了新的文献求助10
10秒前
赘婿应助时尚嚓茶采纳,获得10
10秒前
所所应助友好珍采纳,获得10
11秒前
成就含玉发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
jia完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
佐小叶发布了新的文献求助10
13秒前
奋斗龙猫发布了新的文献求助10
14秒前
15秒前
16秒前
科研通AI6.1应助Ytion采纳,获得10
19秒前
19秒前
19秒前
20秒前
纯情的白开水完成签到 ,获得积分10
20秒前
20秒前
21秒前
在水一方应助yanyust采纳,获得10
22秒前
22秒前
劳永杰发布了新的文献求助10
22秒前
笑点低梦安完成签到,获得积分10
22秒前
Lanmeiwei完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5826378
求助须知:如何正确求助?哪些是违规求助? 6014938
关于积分的说明 15569392
捐赠科研通 4946629
什么是DOI,文献DOI怎么找? 2664904
邀请新用户注册赠送积分活动 1610755
关于科研通互助平台的介绍 1565665