相位恢复
计算机科学
卷积神经网络
算法
迭代法
人工神经网络
牛顿法
正规化(语言学)
迭代重建
高斯
深度学习
人工智能
傅里叶变换
数学
物理
非线性系统
数学分析
量子力学
作者
Kannara Mom,Max Langer,Bruno Sixou
出处
期刊:Optics Letters
[The Optical Society]
日期:2023-01-26
卷期号:48 (5): 1136-1136
被引量:4
摘要
We propose the deep Gauss–Newton (DGN) algorithm. The DGN allows one to take into account the knowledge of the forward model in a deep neural network by unrolling a Gauss–Newton optimization method. No regularization or step size needs to be chosen; they are learned through convolutional neural networks. The proposed algorithm does not require an initial reconstruction and is able to retrieve simultaneously the phase and absorption from a single-distance diffraction pattern. The DGN method was applied to both simulated and experimental data and permitted large improvements of the reconstruction error and of the resolution compared with a state-of-the-art iterative method and another neural-network-based reconstruction algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI