HS2P: Hierarchical spectral and structure-preserving fusion network for multimodal remote sensing image cloud and shadow removal

计算机科学 遥感 云计算 合成孔径雷达 人工智能 影子(心理学) 计算机视觉 图像融合 散斑噪声 斑点图案 图像(数学) 地质学 心理学 操作系统 心理治疗师
作者
Yansheng Li,Fanyi Wei,Yongjun Zhang,Wei Chen,Jiayi Ma
出处
期刊:Information Fusion [Elsevier]
卷期号:94: 215-228 被引量:16
标识
DOI:10.1016/j.inffus.2023.02.002
摘要

Optical remote sensing images are often contaminated by clouds and shadows, resulting in missing data, which greatly hinders consistent Earth observation missions. Cloud and shadow removal is one of the most important tasks in optical remote sensing image processing. Due to the characteristics of active imaging that enable synthetic aperture radar (SAR) to penetrate cloud cover and other climatic conditions, SAR data are extensively utilized to guide optical remote sensing image cloud and shadow removal. Nevertheless, SAR data are highly corrupted by speckle noise, which generates artifact pollution to spectral features extracted from optical images and makes SAR-optical fusion ill-posed to generate cloud and shadow removal results while retaining high spectral fidelity and reasonable spatial structures. To overcome the aforementioned drawbacks, this paper presents a novel hierarchical spectral and structure-preserving fusion network (HS2P), which can recover cloud and shadow regions in optical remote sensing imagery based on the hierarchical fusion of optical and SAR remote sensing imagery. In HS2P, we present a deep hierarchical architecture with stacked residual groups (ResGroups), which progressively constrains the reconstruction. To pursue the adaptive selection of more informative features for fusion and reduce attention to the features with artifacts brought by clouds and shadows in optical data or speckle noise in SAR data, residual blocks with a channel attention mechanism (RBCA) are recommended. Additionally, a novel collaborative optimization loss function is proposed to preserve spectral features while enhancing structural details. Extensive experiments on the publicly open dataset (i.e., SEN12MS-CR) demonstrate that the proposed method can robustly recover diverse ground information in optical remote sensing imagery with various cloud types. Compared with the state-of-the-art cloud and shadow removal methods, our HS2P achieves significant improvements in terms of quantitative and qualitative results. The source code is publicly available at https://github.com/weifanyi515/HS2P.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助Lensin采纳,获得10
刚刚
fcc发布了新的文献求助10
刚刚
科研通AI2S应助曲夜白采纳,获得10
刚刚
易只千纸鹤完成签到,获得积分10
1秒前
王灿灿发布了新的文献求助10
1秒前
Jun应助呆呆瓜采纳,获得10
1秒前
1秒前
贪玩书琴发布了新的文献求助10
1秒前
科目三应助我要吃饭采纳,获得10
2秒前
2秒前
无限亦寒发布了新的文献求助10
2秒前
zero发布了新的文献求助10
2秒前
666完成签到,获得积分10
2秒前
3秒前
蓝天白云发布了新的文献求助10
3秒前
Chemisboy发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
Alarician完成签到,获得积分10
5秒前
xzz完成签到 ,获得积分10
5秒前
叶世玉完成签到,获得积分10
6秒前
6秒前
金旭发布了新的文献求助10
6秒前
释然发布了新的文献求助10
7秒前
0713发布了新的文献求助10
7秒前
晴天霹雳3732完成签到,获得积分10
7秒前
7秒前
8秒前
Gauss应助xixi采纳,获得30
8秒前
9秒前
无花果应助微糖煎蛋采纳,获得10
9秒前
不学石油完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
123发布了新的文献求助10
11秒前
laiwei发布了新的文献求助10
11秒前
Hh发布了新的文献求助10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156528
求助须知:如何正确求助?哪些是违规求助? 2807966
关于积分的说明 7875565
捐赠科研通 2466256
什么是DOI,文献DOI怎么找? 1312779
科研通“疑难数据库(出版商)”最低求助积分说明 630273
版权声明 601919