HS2P: Hierarchical spectral and structure-preserving fusion network for multimodal remote sensing image cloud and shadow removal

计算机科学 遥感 云计算 人工智能 影子(心理学) 计算机视觉 融合 图像融合 图像(数学) 地质学 心理学 语言学 操作系统 哲学 心理治疗师
作者
Yansheng Li,Fanyi Wei,Yongjun Zhang,Wei Chen,Jiayi Ma
出处
期刊:Information Fusion [Elsevier BV]
卷期号:94: 215-228 被引量:32
标识
DOI:10.1016/j.inffus.2023.02.002
摘要

Optical remote sensing images are often contaminated by clouds and shadows, resulting in missing data, which greatly hinders consistent Earth observation missions. Cloud and shadow removal is one of the most important tasks in optical remote sensing image processing. Due to the characteristics of active imaging that enable synthetic aperture radar (SAR) to penetrate cloud cover and other climatic conditions, SAR data are extensively utilized to guide optical remote sensing image cloud and shadow removal. Nevertheless, SAR data are highly corrupted by speckle noise, which generates artifact pollution to spectral features extracted from optical images and makes SAR-optical fusion ill-posed to generate cloud and shadow removal results while retaining high spectral fidelity and reasonable spatial structures. To overcome the aforementioned drawbacks, this paper presents a novel hierarchical spectral and structure-preserving fusion network (HS2P), which can recover cloud and shadow regions in optical remote sensing imagery based on the hierarchical fusion of optical and SAR remote sensing imagery. In HS2P, we present a deep hierarchical architecture with stacked residual groups (ResGroups), which progressively constrains the reconstruction. To pursue the adaptive selection of more informative features for fusion and reduce attention to the features with artifacts brought by clouds and shadows in optical data or speckle noise in SAR data, residual blocks with a channel attention mechanism (RBCA) are recommended. Additionally, a novel collaborative optimization loss function is proposed to preserve spectral features while enhancing structural details. Extensive experiments on the publicly open dataset (i.e., SEN12MS-CR) demonstrate that the proposed method can robustly recover diverse ground information in optical remote sensing imagery with various cloud types. Compared with the state-of-the-art cloud and shadow removal methods, our HS2P achieves significant improvements in terms of quantitative and qualitative results. The source code is publicly available at https://github.com/weifanyi515/HS2P.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhw完成签到,获得积分10
1秒前
1秒前
平常炳发布了新的文献求助10
2秒前
zt发布了新的文献求助10
2秒前
2秒前
box1221发布了新的文献求助10
2秒前
好为发布了新的文献求助10
3秒前
zhan完成签到,获得积分10
3秒前
领导范儿应助受伤馒头采纳,获得10
4秒前
fff完成签到 ,获得积分10
4秒前
zzz完成签到,获得积分20
5秒前
姜晓涵发布了新的文献求助10
7秒前
7秒前
科目三应助辛勤的白枫采纳,获得10
8秒前
8秒前
好为完成签到,获得积分20
10秒前
10秒前
10秒前
科研通AI5应助一天三个蛋采纳,获得10
11秒前
12秒前
共享精神应助明理寄容采纳,获得10
13秒前
Solitude_Z发布了新的文献求助10
13秒前
小鹏哥完成签到,获得积分10
13秒前
13秒前
14秒前
acb发布了新的文献求助10
16秒前
李健的小迷弟应助Solitude_Z采纳,获得10
16秒前
汉堡包应助XUXU采纳,获得10
16秒前
17秒前
文艺的匪发布了新的文献求助10
17秒前
1h发布了新的文献求助10
17秒前
wushuping完成签到,获得积分10
18秒前
道明嗣完成签到 ,获得积分10
18秒前
19秒前
20秒前
向阳而生完成签到,获得积分10
21秒前
21秒前
思源应助yqt采纳,获得10
21秒前
皮皮发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061433
求助须知:如何正确求助?哪些是违规求助? 4285459
关于积分的说明 13354590
捐赠科研通 4103331
什么是DOI,文献DOI怎么找? 2246615
邀请新用户注册赠送积分活动 1252277
关于科研通互助平台的介绍 1183203