HS2P: Hierarchical spectral and structure-preserving fusion network for multimodal remote sensing image cloud and shadow removal

计算机科学 遥感 云计算 人工智能 影子(心理学) 计算机视觉 融合 图像融合 图像(数学) 地质学 心理学 语言学 操作系统 哲学 心理治疗师
作者
Yansheng Li,Fanyi Wei,Yongjun Zhang,Wei Chen,Jiayi Ma
出处
期刊:Information Fusion [Elsevier BV]
卷期号:94: 215-228 被引量:32
标识
DOI:10.1016/j.inffus.2023.02.002
摘要

Optical remote sensing images are often contaminated by clouds and shadows, resulting in missing data, which greatly hinders consistent Earth observation missions. Cloud and shadow removal is one of the most important tasks in optical remote sensing image processing. Due to the characteristics of active imaging that enable synthetic aperture radar (SAR) to penetrate cloud cover and other climatic conditions, SAR data are extensively utilized to guide optical remote sensing image cloud and shadow removal. Nevertheless, SAR data are highly corrupted by speckle noise, which generates artifact pollution to spectral features extracted from optical images and makes SAR-optical fusion ill-posed to generate cloud and shadow removal results while retaining high spectral fidelity and reasonable spatial structures. To overcome the aforementioned drawbacks, this paper presents a novel hierarchical spectral and structure-preserving fusion network (HS2P), which can recover cloud and shadow regions in optical remote sensing imagery based on the hierarchical fusion of optical and SAR remote sensing imagery. In HS2P, we present a deep hierarchical architecture with stacked residual groups (ResGroups), which progressively constrains the reconstruction. To pursue the adaptive selection of more informative features for fusion and reduce attention to the features with artifacts brought by clouds and shadows in optical data or speckle noise in SAR data, residual blocks with a channel attention mechanism (RBCA) are recommended. Additionally, a novel collaborative optimization loss function is proposed to preserve spectral features while enhancing structural details. Extensive experiments on the publicly open dataset (i.e., SEN12MS-CR) demonstrate that the proposed method can robustly recover diverse ground information in optical remote sensing imagery with various cloud types. Compared with the state-of-the-art cloud and shadow removal methods, our HS2P achieves significant improvements in terms of quantitative and qualitative results. The source code is publicly available at https://github.com/weifanyi515/HS2P.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助天真的一斩采纳,获得10
1秒前
2秒前
2秒前
2秒前
顺心从安发布了新的文献求助10
2秒前
纯真含灵完成签到,获得积分10
2秒前
4秒前
在水一方应助金金采纳,获得10
4秒前
5秒前
5秒前
jiayue完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
隐形曼青应助新司机采纳,获得10
7秒前
深情安青应助Zephyr采纳,获得10
7秒前
项初蝶完成签到,获得积分10
7秒前
8秒前
英勇水杯完成签到,获得积分10
8秒前
8秒前
一期一会发布了新的文献求助10
9秒前
安徽梁朝伟完成签到,获得积分10
10秒前
10秒前
啾啾完成签到,获得积分10
11秒前
SYLH应助爱尼可采纳,获得10
11秒前
认真雅阳发布了新的文献求助10
12秒前
12秒前
hebilie发布了新的文献求助10
12秒前
皮皮虾发布了新的文献求助10
13秒前
sedrakyan完成签到,获得积分10
13秒前
张大英完成签到,获得积分10
13秒前
LCC发布了新的文献求助20
14秒前
张震渝完成签到,获得积分10
14秒前
李想完成签到,获得积分10
15秒前
YY发布了新的文献求助10
15秒前
Liu发布了新的文献求助10
17秒前
17秒前
17秒前
yyyyyy完成签到,获得积分20
17秒前
慕青应助sedrakyan采纳,获得10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016913
求助须知:如何正确求助?哪些是违规求助? 3557067
关于积分的说明 11323667
捐赠科研通 3289813
什么是DOI,文献DOI怎么找? 1812563
邀请新用户注册赠送积分活动 888139
科研通“疑难数据库(出版商)”最低求助积分说明 812136