A complementary SEM and deep ANN approach to predict the adoption of cryptocurrencies from the perspective of cybersecurity

数字加密货币 结构方程建模 人工智能 人工神经网络 多层感知器 计算机科学 差异(会计) 占有(语言学) 感知器 深度学习 机器学习 计算机安全 经济 语言学 哲学 会计
作者
İbrahim Arpacı,Mahadi Bahari
出处
期刊:Computers in Human Behavior [Elsevier BV]
卷期号:143: 107678-107678 被引量:21
标识
DOI:10.1016/j.chb.2023.107678
摘要

The present study investigated the role of six fundamental attributes of cybersecurity (i.e., authenticity, availability, confidentiality, integrity, possession/control, and utility) in predicting the adoption of cryptocurrencies. The study developed a prediction model and evaluated this model using a complementary approach by integrating structural equation modeling (SEM) and a deep artificial neural network (ANN) model. The sample of the study consisted of 450 cryptocurrency users aged between 18 and 38. The SEM results showed that availability, integrity, utility, and possession/control significantly predict attitudes, which in turn significantly predict continuous intention to use cryptocurrencies. The paths specified in the structural model accounted for 24% and 85% of the variance in attitude and continuous intention, respectively. Furthermore, the prediction model was tested by using a deep ANN multi-layer perceptron (MLP) algorithm. The algorithm predicted the attitude with a mean accuracy of 60.59% and 66.82% for training and testing, respectively. The result indicated that the deep ANN performed better than SEM in predicting attitude. The complementary approach enabled the discovery of both nonlinear and linear relationships between the variables and thereby contributed to accurately predicting adoption behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
宋昊发布了新的文献求助10
1秒前
ji关注了科研通微信公众号
1秒前
2秒前
2秒前
2秒前
领导范儿应助二六采纳,获得10
2秒前
森距离发布了新的文献求助30
2秒前
3秒前
3秒前
4秒前
5秒前
aqua_xin完成签到,获得积分0
5秒前
小马甲应助栗子采纳,获得10
5秒前
培爷完成签到,获得积分10
6秒前
6秒前
有何丿不可应助肯德鸭采纳,获得10
6秒前
7秒前
酱酱发布了新的文献求助10
7秒前
山上完成签到,获得积分10
7秒前
曲奇发布了新的文献求助10
8秒前
深情安青应助大气的谷梦采纳,获得10
8秒前
8秒前
8秒前
8秒前
万能图书馆应助学术蛔虫采纳,获得10
8秒前
9秒前
彭于晏应助奥黛丽悟空采纳,获得10
10秒前
David发布了新的文献求助10
10秒前
Dameli发布了新的文献求助10
11秒前
等待凌香应助河镜采纳,获得30
11秒前
zxfaaaaa完成签到,获得积分10
11秒前
自由凌雪发布了新的文献求助10
12秒前
星辰大海应助lbj曾经的你采纳,获得10
13秒前
麋鹿发布了新的文献求助10
15秒前
黑森林发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA handbook of personality and social psychology, Volume 2: Group processes 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3654755
求助须知:如何正确求助?哪些是违规求助? 3218136
关于积分的说明 9721445
捐赠科研通 2926222
什么是DOI,文献DOI怎么找? 1602567
邀请新用户注册赠送积分活动 755554
科研通“疑难数据库(出版商)”最低求助积分说明 733415