绝热剪切带
材料科学
分离式霍普金森压力棒
动态再结晶
电子背散射衍射
合金
应变率
复合材料
剪切(地质)
剪切带
加工硬化
冶金
微观结构
热加工
作者
Kun Jiang,Jianguo Li,Xiukai Kan,Feng Zhao,Bing Hou,Q. Wei,Tao Suo
标识
DOI:10.1016/j.ijplas.2023.103550
摘要
Due to their strong strain hardening, face-centered cubic (FCC) high/medium entropy alloys (H/MEAs) have remarkable resistance to shear localization even under forced dynamic shear. In this work we investigated the dynamic mechanical behavior of an FCC Al0.1CoCrFeNi HEA via a series of split Hopkinson pressure bar (SHPB) experiments at 77 K and room temperature. This HEA exhibited very strong strain hardening capacity, remarkable strain rate sensitivity and moderate temperature dependence. Such a combination of mechanical properties should be strongly unfavorable for adiabatic shear bands (ASBs). However, its dynamic compressive failure at 77 K was found to be caused by crack propagation within the primary ASBs along the directions of maximum shear stress. Detailed examination of the specimens using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) revealed convincing microstructural evidences for massive dynamic recrystallization (DRX) prior to ASB. We suggested that the expansion and coalescence of these DRX softened regions served as the root cause for the occurrence of ASBs and the final catastrophic fracture of specimens. The severe local shear flow, substantial adiabatic temperature rise and extremely fast quenching within the ASB resulted in ultrafine grains therein. Our results and analyses provided a plausible understanding of the formation mechanisms of ASBs in the FCC HEA under impact loading.
科研通智能强力驱动
Strongly Powered by AbleSci AI