Intensity and phase stacked analysis of a Φ-OTDR system using deep transfer learning and recurrent neural networks

计算机科学 光时域反射计 模式识别(心理学) 卷积神经网络 人工智能 特征提取 学习迁移 人工神经网络 特征(语言学) 深度学习 传递函数 光纤 光纤传感器 光纤分路器 电信 电气工程 工程类 哲学 语言学
作者
Ceyhun Efe Kayan,Kıvılcım Yüksel,Abdurrahman Gümüş
出处
期刊:Applied Optics [The Optical Society]
卷期号:62 (7): 1753-1753 被引量:7
标识
DOI:10.1364/ao.481757
摘要

Distributed acoustic sensors (DAS) are effective apparatuses that are widely used in many application areas for recording signals of various events with very high spatial resolution along optical fibers. To properly detect and recognize the recorded events, advanced signal processing algorithms with high computational demands are crucial. Convolutional neural networks (CNNs) are highly capable tools to extract spatial information and are suitable for event recognition applications in DAS. Long short-term memory (LSTM) is an effective instrument to process sequential data. In this study, a two-stage feature extraction methodology that combines the capabilities of these neural network architectures with transfer learning is proposed to classify vibrations applied to an optical fiber by a piezoelectric transducer. First, the differential amplitude and phase information is extracted from the phase-sensitive optical time domain reflectometer (Φ-OTDR) recordings and stored in a spatiotemporal data matrix. Then, a state-of-the-art pre-trained CNN without dense layers is used as a feature extractor in the first stage. In the second stage, LSTMs are used to further analyze the features extracted by the CNN. Finally, a dense layer is used to classify the extracted features. To observe the effect of different CNN architectures, the proposed model is tested with five state-of-the-art pre-trained models (VGG-16, ResNet-50, DenseNet-121, MobileNet, and Inception-v3). The results show that using the VGG-16 architecture in the proposed framework manages to obtain a 100% classification accuracy in 50 trainings and got the best results on the Φ-OTDR dataset. The results of this study indicate that pre-trained CNNs combined with LSTM are very suitable to analyze differential amplitude and phase information represented in a spatiotemporal data matrix, which is promising for event recognition operations in DAS applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助拼搏向上采纳,获得10
刚刚
1秒前
符fu发布了新的文献求助10
2秒前
在水一方应助粱夏烟采纳,获得10
2秒前
4秒前
4秒前
pkuwalker完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
文房四宝完成签到,获得积分20
7秒前
8秒前
9秒前
烟花应助ann采纳,获得30
9秒前
LZN发布了新的文献求助10
9秒前
哈哈哈哈发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
hanshishengye完成签到 ,获得积分10
11秒前
宇麦达发布了新的文献求助10
12秒前
陈都灵发布了新的文献求助10
13秒前
13秒前
13秒前
石页发布了新的文献求助10
13秒前
科研通AI2S应助我想查文献采纳,获得10
14秒前
科研12345发布了新的文献求助10
15秒前
uuuuu应助哈哈哈哈采纳,获得10
16秒前
pkuwalker发布了新的文献求助10
16秒前
16秒前
拼搏向上发布了新的文献求助10
16秒前
传奇3应助Zoe采纳,获得10
16秒前
程程程发布了新的文献求助10
17秒前
谨慎的雨灵完成签到,获得积分10
17秒前
mmyhn发布了新的文献求助10
18秒前
Ww完成签到,获得积分10
18秒前
cc发布了新的文献求助10
19秒前
天真的莺发布了新的文献求助30
19秒前
XinX发布了新的文献求助10
20秒前
LLL发布了新的文献求助10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136013
求助须知:如何正确求助?哪些是违规求助? 2786835
关于积分的说明 7779716
捐赠科研通 2443045
什么是DOI,文献DOI怎么找? 1298822
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870