Intensity and phase stacked analysis of a Φ-OTDR system using deep transfer learning and recurrent neural networks

计算机科学 光时域反射计 模式识别(心理学) 卷积神经网络 人工智能 特征提取 学习迁移 人工神经网络 特征(语言学) 深度学习 传递函数 光纤 光纤传感器 光纤分路器 电信 电气工程 工程类 哲学 语言学
作者
Ceyhun Efe Kayan,Kıvılcım Yüksel,Abdurrahman Gümüş
出处
期刊:Applied Optics [The Optical Society]
卷期号:62 (7): 1753-1753 被引量:11
标识
DOI:10.1364/ao.481757
摘要

Distributed acoustic sensors (DAS) are effective apparatuses that are widely used in many application areas for recording signals of various events with very high spatial resolution along optical fibers. To properly detect and recognize the recorded events, advanced signal processing algorithms with high computational demands are crucial. Convolutional neural networks (CNNs) are highly capable tools to extract spatial information and are suitable for event recognition applications in DAS. Long short-term memory (LSTM) is an effective instrument to process sequential data. In this study, a two-stage feature extraction methodology that combines the capabilities of these neural network architectures with transfer learning is proposed to classify vibrations applied to an optical fiber by a piezoelectric transducer. First, the differential amplitude and phase information is extracted from the phase-sensitive optical time domain reflectometer (Φ-OTDR) recordings and stored in a spatiotemporal data matrix. Then, a state-of-the-art pre-trained CNN without dense layers is used as a feature extractor in the first stage. In the second stage, LSTMs are used to further analyze the features extracted by the CNN. Finally, a dense layer is used to classify the extracted features. To observe the effect of different CNN architectures, the proposed model is tested with five state-of-the-art pre-trained models (VGG-16, ResNet-50, DenseNet-121, MobileNet, and Inception-v3). The results show that using the VGG-16 architecture in the proposed framework manages to obtain a 100% classification accuracy in 50 trainings and got the best results on the Φ-OTDR dataset. The results of this study indicate that pre-trained CNNs combined with LSTM are very suitable to analyze differential amplitude and phase information represented in a spatiotemporal data matrix, which is promising for event recognition operations in DAS applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈咪咪完成签到,获得积分10
刚刚
Ares完成签到,获得积分10
1秒前
浮游应助imi采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
4秒前
Greg应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
张庭豪完成签到,获得积分10
4秒前
6秒前
sdjjis完成签到 ,获得积分10
6秒前
Snail6完成签到,获得积分10
7秒前
研友_LX7zK8完成签到,获得积分10
8秒前
简奥斯汀完成签到 ,获得积分10
8秒前
wxp5294完成签到,获得积分10
8秒前
8秒前
寒冷丹雪完成签到,获得积分10
8秒前
缺缺完成签到,获得积分10
9秒前
牛仔完成签到 ,获得积分10
10秒前
11秒前
时有落花至完成签到,获得积分10
12秒前
可靠的千凝完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
清爽朋友完成签到,获得积分10
12秒前
QQ完成签到 ,获得积分10
13秒前
化简为繁完成签到,获得积分10
13秒前
金桔希子完成签到,获得积分10
14秒前
16秒前
青青完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
小蘑菇噢噢噢完成签到,获得积分10
17秒前
wd完成签到,获得积分10
17秒前
成就的白羊完成签到,获得积分10
18秒前
蛋花肉圆汤完成签到,获得积分0
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071