亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intensity and phase stacked analysis of a Φ-OTDR system using deep transfer learning and recurrent neural networks

计算机科学 光时域反射计 模式识别(心理学) 卷积神经网络 人工智能 特征提取 学习迁移 人工神经网络 特征(语言学) 深度学习 传递函数 光纤 光纤传感器 光纤分路器 电信 电气工程 工程类 哲学 语言学
作者
Ceyhun Efe Kayan,Kıvılcım Yüksel,Abdurrahman Gümüş
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:62 (7): 1753-1753 被引量:11
标识
DOI:10.1364/ao.481757
摘要

Distributed acoustic sensors (DAS) are effective apparatuses that are widely used in many application areas for recording signals of various events with very high spatial resolution along optical fibers. To properly detect and recognize the recorded events, advanced signal processing algorithms with high computational demands are crucial. Convolutional neural networks (CNNs) are highly capable tools to extract spatial information and are suitable for event recognition applications in DAS. Long short-term memory (LSTM) is an effective instrument to process sequential data. In this study, a two-stage feature extraction methodology that combines the capabilities of these neural network architectures with transfer learning is proposed to classify vibrations applied to an optical fiber by a piezoelectric transducer. First, the differential amplitude and phase information is extracted from the phase-sensitive optical time domain reflectometer (Φ-OTDR) recordings and stored in a spatiotemporal data matrix. Then, a state-of-the-art pre-trained CNN without dense layers is used as a feature extractor in the first stage. In the second stage, LSTMs are used to further analyze the features extracted by the CNN. Finally, a dense layer is used to classify the extracted features. To observe the effect of different CNN architectures, the proposed model is tested with five state-of-the-art pre-trained models (VGG-16, ResNet-50, DenseNet-121, MobileNet, and Inception-v3). The results show that using the VGG-16 architecture in the proposed framework manages to obtain a 100% classification accuracy in 50 trainings and got the best results on the Φ-OTDR dataset. The results of this study indicate that pre-trained CNNs combined with LSTM are very suitable to analyze differential amplitude and phase information represented in a spatiotemporal data matrix, which is promising for event recognition operations in DAS applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助读书的时候采纳,获得10
9秒前
23秒前
顾矜应助读书的时候采纳,获得10
28秒前
无花果应助读书的时候采纳,获得10
46秒前
CodeCraft应助读书的时候采纳,获得10
1分钟前
1分钟前
科研通AI6应助读书的时候采纳,获得10
1分钟前
搜集达人应助读书的时候采纳,获得10
1分钟前
金光一闪完成签到,获得积分10
2分钟前
彭于晏应助读书的时候采纳,获得10
2分钟前
2分钟前
2分钟前
传奇3应助读书的时候采纳,获得10
2分钟前
2分钟前
科研通AI6应助读书的时候采纳,获得10
2分钟前
科研通AI5应助读书的时候采纳,获得10
3分钟前
查查完成签到,获得积分10
3分钟前
科研通AI5应助读书的时候采纳,获得10
3分钟前
科研通AI5应助读书的时候采纳,获得10
3分钟前
Ava应助读书的时候采纳,获得10
4分钟前
科研通AI6应助读书的时候采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
勤恳依霜发布了新的文献求助10
4分钟前
4分钟前
fufufu123完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
林利芳完成签到 ,获得积分0
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935401
求助须知:如何正确求助?哪些是违规求助? 4202806
关于积分的说明 13058830
捐赠科研通 3977750
什么是DOI,文献DOI怎么找? 2179602
邀请新用户注册赠送积分活动 1195669
关于科研通互助平台的介绍 1107367