Intensity and phase stacked analysis of a Φ-OTDR system using deep transfer learning and recurrent neural networks

计算机科学 光时域反射计 模式识别(心理学) 卷积神经网络 人工智能 特征提取 学习迁移 人工神经网络 特征(语言学) 深度学习 传递函数 光纤 光纤传感器 光纤分路器 电信 电气工程 工程类 哲学 语言学
作者
Ceyhun Efe Kayan,Kıvılcım Yüksel,Abdurrahman Gümüş
出处
期刊:Applied Optics [The Optical Society]
卷期号:62 (7): 1753-1753 被引量:11
标识
DOI:10.1364/ao.481757
摘要

Distributed acoustic sensors (DAS) are effective apparatuses that are widely used in many application areas for recording signals of various events with very high spatial resolution along optical fibers. To properly detect and recognize the recorded events, advanced signal processing algorithms with high computational demands are crucial. Convolutional neural networks (CNNs) are highly capable tools to extract spatial information and are suitable for event recognition applications in DAS. Long short-term memory (LSTM) is an effective instrument to process sequential data. In this study, a two-stage feature extraction methodology that combines the capabilities of these neural network architectures with transfer learning is proposed to classify vibrations applied to an optical fiber by a piezoelectric transducer. First, the differential amplitude and phase information is extracted from the phase-sensitive optical time domain reflectometer (Φ-OTDR) recordings and stored in a spatiotemporal data matrix. Then, a state-of-the-art pre-trained CNN without dense layers is used as a feature extractor in the first stage. In the second stage, LSTMs are used to further analyze the features extracted by the CNN. Finally, a dense layer is used to classify the extracted features. To observe the effect of different CNN architectures, the proposed model is tested with five state-of-the-art pre-trained models (VGG-16, ResNet-50, DenseNet-121, MobileNet, and Inception-v3). The results show that using the VGG-16 architecture in the proposed framework manages to obtain a 100% classification accuracy in 50 trainings and got the best results on the Φ-OTDR dataset. The results of this study indicate that pre-trained CNNs combined with LSTM are very suitable to analyze differential amplitude and phase information represented in a spatiotemporal data matrix, which is promising for event recognition operations in DAS applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴滴完成签到 ,获得积分10
1秒前
勤恳的德地完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
yayika完成签到 ,获得积分10
3秒前
3秒前
3秒前
宗忻完成签到,获得积分10
3秒前
天天快乐应助万物生采纳,获得10
4秒前
霸气的思柔完成签到,获得积分10
5秒前
w1发布了新的文献求助10
5秒前
Joyce完成签到,获得积分10
5秒前
整齐的外套应助chruse采纳,获得10
5秒前
Wguan完成签到,获得积分10
5秒前
shirley完成签到,获得积分10
5秒前
洛七落完成签到 ,获得积分10
6秒前
WWL发布了新的文献求助10
6秒前
SINET完成签到,获得积分10
6秒前
moxin完成签到,获得积分10
7秒前
科研通AI6应助木木木采纳,获得10
7秒前
啊啊啊啊完成签到,获得积分10
7秒前
李迎硕发布了新的文献求助10
8秒前
mark完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
jiangjiang完成签到,获得积分10
10秒前
10秒前
11秒前
jluzz完成签到,获得积分10
11秒前
liyan完成签到 ,获得积分10
12秒前
闻疏完成签到,获得积分10
12秒前
1234完成签到,获得积分10
13秒前
可可卡比兽完成签到 ,获得积分10
13秒前
星辰大海应助D&L采纳,获得10
14秒前
十月的天空完成签到,获得积分10
14秒前
等待谷南完成签到,获得积分10
15秒前
15秒前
yl完成签到,获得积分10
15秒前
Carly完成签到,获得积分10
15秒前
jane完成签到,获得积分10
15秒前
宁静致远发布了新的文献求助10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698764
求助须知:如何正确求助?哪些是违规求助? 5126644
关于积分的说明 15222455
捐赠科研通 4853803
什么是DOI,文献DOI怎么找? 2604299
邀请新用户注册赠送积分活动 1555778
关于科研通互助平台的介绍 1514110