Emotion recognition using spatial-temporal EEG features through convolutional graph attention network

脑电图 计算机科学 情绪识别 图形 卷积神经网络 认知心理学 模式识别(心理学) 人工智能 语音识别 心理学 理论计算机科学 神经科学
作者
Zhongjie Li,Gaoyan Zhang,Longbiao Wang,Jianguo Wei,Jianwu Dang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (1): 016046-016046 被引量:27
标识
DOI:10.1088/1741-2552/acb79e
摘要

Abstract Objective. Constructing an efficient human emotion recognition model based on electroencephalogram (EEG) signals is significant for realizing emotional brain–computer interaction and improving machine intelligence. Approach. In this paper, we present a spatial-temporal feature fused convolutional graph attention network (STFCGAT) model based on multi-channel EEG signals for human emotion recognition. First, we combined the single-channel differential entropy (DE) feature with the cross-channel functional connectivity (FC) feature to extract both the temporal variation and spatial topological information of EEG. After that, a novel convolutional graph attention network was used to fuse the DE and FC features and further extract higher-level graph structural information with sufficient expressive power for emotion recognition. Furthermore, we introduced a multi-headed attention mechanism in graph neural networks to improve the generalization ability of the model. Main results. We evaluated the emotion recognition performance of our proposed model on the public SEED and DEAP datasets, which achieved a classification accuracy of 99.11% ± 0.83% and 94.83% ± 3.41% in the subject-dependent and subject-independent experiments on the SEED dataset, and achieved an accuracy of 91.19% ± 1.24% and 92.03% ± 4.57% for discrimination of arousal and valence in subject-independent experiments on DEAP dataset. Notably, our model achieved state-of-the-art performance on cross-subject emotion recognition tasks for both datasets. In addition, we gained insight into the proposed frame through both the ablation experiments and the analysis of spatial patterns of FC and DE features. Significance. All these results prove the effectiveness of the STFCGAT architecture for emotion recognition and also indicate that there are significant differences in the spatial-temporal characteristics of the brain under different emotional states.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
111发布了新的文献求助10
刚刚
1秒前
小蘑菇应助freeaway采纳,获得10
1秒前
lcc发布了新的文献求助10
1秒前
自然的初丹完成签到,获得积分10
2秒前
哈哈哈完成签到,获得积分10
2秒前
。。发布了新的文献求助30
2秒前
华仔应助JRvector采纳,获得10
3秒前
4秒前
4秒前
研友_LOoomL发布了新的文献求助10
4秒前
小羊完成签到,获得积分10
5秒前
张秉环发布了新的文献求助10
5秒前
6秒前
叁壹捌发布了新的文献求助30
6秒前
李爱国应助JS采纳,获得10
6秒前
6秒前
6秒前
lcy发布了新的文献求助200
6秒前
6秒前
7秒前
fsz发布了新的文献求助10
7秒前
8秒前
ccc发布了新的文献求助10
8秒前
8秒前
李健应助黄沙漠采纳,获得10
9秒前
故意的如冬完成签到,获得积分10
9秒前
9秒前
9秒前
耿影影发布了新的文献求助10
10秒前
夜夕发布了新的文献求助10
10秒前
Vegccc发布了新的文献求助10
10秒前
Vivi完成签到,获得积分10
10秒前
吴学仕发布了新的文献求助10
10秒前
大气的身影完成签到,获得积分10
11秒前
李鱼丸完成签到,获得积分10
11秒前
我是老大应助永恒星采纳,获得10
11秒前
jar7989发布了新的文献求助20
13秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222804
求助须知:如何正确求助?哪些是违规求助? 2871564
关于积分的说明 8176070
捐赠科研通 2538543
什么是DOI,文献DOI怎么找? 1370632
科研通“疑难数据库(出版商)”最低求助积分说明 645818
邀请新用户注册赠送积分活动 619706