An Ultrasmall Bolt Defect Detection Method for Transmission Line Inspection

计算机科学 材料科学 输电线路 传输(电信) 结构工程 声学 电子工程 工程类 物理 电气工程
作者
Peng Luo,Bo Wang,Hongxia Wang,Fuqi Ma,Hengrui Ma,Leixiong Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:40
标识
DOI:10.1109/tim.2023.3241994
摘要

Bolt defect inspection is an important work in transmission line inspection. Due to the small size of bolts in the transmission line inspection images, existing algorithms are difficult to extract valuable features and achieve poor performance on bolt defect detection. This paper proposed an ultra-small bolt defect detection model(UBDDM) based on a deep convolutional neural network(DCNN), including an ultra-small object perception module(UOPM) and a local bolt detection module(LBDM). In this paper, UOPM is first constructed to realize coarse region recognition for the salient region of bolts in the inspection images, and the high-resolution image blocks are obtained from the original image according to the recognition results. Then, LBDM is constructed to intelligently identify the bolt defects from the high-resolution image blocks. Considering that the features of ultra-small targets are difficult to extract, feature extraction networks are constructed based on ResNet-50, and the hybrid attention mechanism and multi-scale feature fusion are introduced to further improve the network's ability to extract shallow features. This method uses two-stage detection to realize end-to-end bolt defect detection but only needs to provide a single-stage target detection label, which greatly reduces the workload of data labeling. Experimental results show that the proposed method achieves excellent performance on bolt defect detection in inspection images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
良辰应助汪洋浮萍一道开采纳,获得10
刚刚
安然僧发布了新的文献求助10
1秒前
tsing完成签到,获得积分20
1秒前
阿锋关注了科研通微信公众号
2秒前
3秒前
3秒前
星辰大海应助1680Y采纳,获得10
3秒前
4秒前
4秒前
爆米花应助清脆的乌冬面采纳,获得10
5秒前
6秒前
6秒前
SciGPT应助szy采纳,获得10
7秒前
helong1208发布了新的文献求助10
7秒前
LS完成签到,获得积分10
7秒前
可爱的函函应助biowzf采纳,获得10
7秒前
8秒前
Zn应助多变的卡宾采纳,获得10
10秒前
Zn应助ZHIXIANGWENG采纳,获得10
10秒前
zhuj11应助ZHIXIANGWENG采纳,获得10
10秒前
zhuj11应助ZHIXIANGWENG采纳,获得10
10秒前
小马甲应助ZHIXIANGWENG采纳,获得10
10秒前
10秒前
NexusExplorer应助ZHIXIANGWENG采纳,获得10
10秒前
dm应助ZHIXIANGWENG采纳,获得10
10秒前
zhuj11应助ZHIXIANGWENG采纳,获得10
10秒前
压缩应助ZHIXIANGWENG采纳,获得10
10秒前
压缩应助ZHIXIANGWENG采纳,获得10
10秒前
yeah完成签到,获得积分10
10秒前
LS发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
共享精神应助清净采纳,获得10
13秒前
jiya发布了新的文献求助10
13秒前
14秒前
15秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543600
求助须知:如何正确求助?哪些是违规求助? 3120949
关于积分的说明 9344906
捐赠科研通 2818967
什么是DOI,文献DOI怎么找? 1549876
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126