亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Masked self‐supervised pre‐training model for EEG‐based emotion recognition

计算机科学 人工智能 机器学习 过程(计算) 特征(语言学) 聚类分析 脑电图 模式识别(心理学) 语音识别 心理学 语言学 操作系统 精神科 哲学
作者
Xinrong Hu,Yu Chen,Jinlin Yan,Yuan Wu,Lei Ding,Jin Xu,Jun Cheng
出处
期刊:Computational Intelligence [Wiley]
卷期号:40 (3)
标识
DOI:10.1111/coin.12659
摘要

Abstract Electroencephalogram (EEG), as a tool capable of objectively recording brain electrical signals during emotional expression, has been extensively utilized. Current technology heavily relies on datasets, with its performance being limited by the size of the dataset and the accuracy of its annotations. At the same time, unsupervised learning and contrastive learning methods largely depend on the feature distribution within datasets, thus requiring training tailored to specific datasets for optimal results. However, the collection of EEG signals is influenced by factors such as equipment, settings, individuals, and experimental procedures, resulting in significant variability. Consequently, the effectiveness of models is heavily dependent on dataset collection efforts conducted under stringent objective conditions. To address these challenges, we introduce a novel approach: employing a self‐supervised pre‐training model, to process data across different datasets. This model is capable of operating effectively across multiple datasets. The model conducts self‐supervised pre‐training without the need for direct access to specific emotion category labels, enabling it to pre‐train and extract universally useful features without predefined downstream tasks. To tackle the issue of semantic expression confusion, we employed a masked prediction model that guides the model to generate richer semantic information through learning bidirectional feature combinations in sequence. Addressing challenges such as significant differences in data distribution, we introduced adaptive clustering techniques that manage by generating pseudo‐labels across multiple categories. The model is capable of enhancing the expression of hidden features in intermediate layers during the self‐supervised training process, enabling it to learn common hidden features across different datasets. This study, by constructing a hybrid dataset and conducting extensive experiments, demonstrated two key findings: (1) our model performs best on multiple evaluation metrics; (2) the model can effectively integrate critical features from different datasets, significantly enhancing the accuracy of emotion recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助葱葱花卷采纳,获得10
5秒前
9秒前
一粟完成签到 ,获得积分10
10秒前
小明发布了新的文献求助10
14秒前
LK完成签到,获得积分10
17秒前
king完成签到 ,获得积分10
22秒前
今后应助于冰清采纳,获得10
22秒前
30秒前
于冰清发布了新的文献求助10
35秒前
LXx完成签到 ,获得积分10
1分钟前
blenx完成签到,获得积分10
1分钟前
tiger完成签到,获得积分10
1分钟前
咚咚完成签到 ,获得积分10
1分钟前
张凯发布了新的文献求助10
1分钟前
月冷完成签到 ,获得积分10
1分钟前
yangyeye完成签到 ,获得积分10
1分钟前
jyy完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
w1x2123完成签到,获得积分10
2分钟前
邮电部诗人完成签到,获得积分10
2分钟前
2分钟前
mmmc大好发布了新的文献求助10
2分钟前
3分钟前
mmmc大好发布了新的文献求助10
3分钟前
3分钟前
桐桐应助科研通管家采纳,获得10
3分钟前
科研小白完成签到,获得积分10
4分钟前
bingo完成签到,获得积分10
4分钟前
今后应助圆圆采纳,获得10
4分钟前
4分钟前
4分钟前
圆圆发布了新的文献求助10
5分钟前
暗觉完成签到 ,获得积分10
5分钟前
5分钟前
大胆易巧完成签到 ,获得积分10
5分钟前
Ayra发布了新的文献求助30
5分钟前
oleskarabach完成签到,获得积分20
5分钟前
哈哈哈完成签到 ,获得积分10
5分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
Modern Relationships 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5849802
求助须知:如何正确求助?哪些是违规求助? 6252005
关于积分的说明 15624797
捐赠科研通 4966199
什么是DOI,文献DOI怎么找? 2677797
邀请新用户注册赠送积分活动 1622125
关于科研通互助平台的介绍 1578202