已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Masked self‐supervised pre‐training model for EEG‐based emotion recognition

计算机科学 人工智能 机器学习 过程(计算) 特征(语言学) 聚类分析 脑电图 模式识别(心理学) 语音识别 心理学 哲学 语言学 精神科 操作系统
作者
Xinrong Hu,Yu Chen,Jackey Z. Yan,Yuan Wu,Lei Ding,Jin Xu,Jun Cheng
出处
期刊:Computational Intelligence [Wiley]
卷期号:40 (3)
标识
DOI:10.1111/coin.12659
摘要

Abstract Electroencephalogram (EEG), as a tool capable of objectively recording brain electrical signals during emotional expression, has been extensively utilized. Current technology heavily relies on datasets, with its performance being limited by the size of the dataset and the accuracy of its annotations. At the same time, unsupervised learning and contrastive learning methods largely depend on the feature distribution within datasets, thus requiring training tailored to specific datasets for optimal results. However, the collection of EEG signals is influenced by factors such as equipment, settings, individuals, and experimental procedures, resulting in significant variability. Consequently, the effectiveness of models is heavily dependent on dataset collection efforts conducted under stringent objective conditions. To address these challenges, we introduce a novel approach: employing a self‐supervised pre‐training model, to process data across different datasets. This model is capable of operating effectively across multiple datasets. The model conducts self‐supervised pre‐training without the need for direct access to specific emotion category labels, enabling it to pre‐train and extract universally useful features without predefined downstream tasks. To tackle the issue of semantic expression confusion, we employed a masked prediction model that guides the model to generate richer semantic information through learning bidirectional feature combinations in sequence. Addressing challenges such as significant differences in data distribution, we introduced adaptive clustering techniques that manage by generating pseudo‐labels across multiple categories. The model is capable of enhancing the expression of hidden features in intermediate layers during the self‐supervised training process, enabling it to learn common hidden features across different datasets. This study, by constructing a hybrid dataset and conducting extensive experiments, demonstrated two key findings: (1) our model performs best on multiple evaluation metrics; (2) the model can effectively integrate critical features from different datasets, significantly enhancing the accuracy of emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
青春梦完成签到 ,获得积分10
4秒前
无限的石头完成签到 ,获得积分10
7秒前
欧文发布了新的文献求助10
8秒前
16秒前
shierfang完成签到 ,获得积分10
18秒前
丿夜幕灬降临丨完成签到,获得积分10
19秒前
Melody发布了新的文献求助10
21秒前
文欣完成签到 ,获得积分10
30秒前
Neon完成签到,获得积分10
30秒前
31秒前
123完成签到 ,获得积分10
31秒前
李伟发布了新的文献求助10
38秒前
43秒前
zzz完成签到 ,获得积分10
45秒前
Carrots发布了新的文献求助10
49秒前
李伟完成签到,获得积分10
49秒前
Akim应助origin采纳,获得10
50秒前
斯文败类应助李伟采纳,获得10
52秒前
伍仨仨完成签到,获得积分10
54秒前
Carrots完成签到 ,获得积分20
1分钟前
斯文败类应助羽绒采纳,获得10
1分钟前
壮壮完成签到 ,获得积分10
1分钟前
DagrZheng发布了新的文献求助10
1分钟前
1分钟前
小团月完成签到 ,获得积分10
1分钟前
1分钟前
zhangxr发布了新的文献求助10
1分钟前
JY应助科研通管家采纳,获得10
1分钟前
寻道图强应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小路完成签到,获得积分10
1分钟前
淡定思远完成签到 ,获得积分10
1分钟前
1分钟前
solar@2030发布了新的文献求助10
1分钟前
1分钟前
orixero应助飞快的语山采纳,获得10
1分钟前
solar@2030完成签到,获得积分20
1分钟前
1分钟前
1分钟前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139464
求助须知:如何正确求助?哪些是违规求助? 2790346
关于积分的说明 7795029
捐赠科研通 2446818
什么是DOI,文献DOI怎么找? 1301411
科研通“疑难数据库(出版商)”最低求助积分说明 626219
版权声明 601141