Tunnel oxide thickness-dependent dominant carrier transport in crystalline silicon solar cells

材料科学 氧化物 晶体硅 光电子学 工程物理 工程类 冶金
作者
Mengmeng Chu,Muhammad Quddamah Khokhar,Seungyong Han,Fucheng Wang,Nguyen Minh Phuong,Vinh Ai Dao,Duy Phong Pham,Junsin Yi
出处
期刊:Optical Materials [Elsevier]
卷期号:154: 115711-115711 被引量:4
标识
DOI:10.1016/j.optmat.2024.115711
摘要

Silver consumption reduction is a current development in commercial tunnel passivated contact (TOPCon) crystalline silicon solar cell devices aimed at lowering the entire production cost of photovoltaic energy sources. It depends on the number of fingers and/or finger spacing (SP) on a cell area. In this paper, we analyze the possibility of minimizing silver use with respect to the dominant carrier transport mechanism. The carrier transporting mechanism, such as "pinhole" and/or "tunnel" models, is identified by examining temperature-dependent I–V characteristics of polysilicon passivating contact as a function of tunnel oxide (TO) thickness from 0.6 to 2.2 nm. Thermal oxidation was used to produce ultrathin TO films (0.6–2.2 nm) with temperature and gas ratio controlled. We find that the "pinholes" transport mechanism prevails when the TO thickness exceeds 1.6 nm, whereas the "tunnel" mode dominates when the TO thickness is less than 1.4 nm. The pinhole density is critical in pinhole mode for increasing SP. It is found that low pinhole densities and thick TO thickness (more than 1.6 nm) are two of the primary causes of narrow SP in TOPCon devices, which need a considerable quantity of silver. The experimental TOPCon devices as a function of TO thickness show a considerable trade-off between open circuit voltage (Voc) and fill factor (FF). While Voc rises, FF drops as TO thickness increases. The mechanism is described.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
Kia发布了新的文献求助30
2秒前
GUKGO完成签到,获得积分10
3秒前
limerence完成签到,获得积分10
3秒前
汉堡包应助风轩轩采纳,获得10
3秒前
林深时见鹿完成签到,获得积分10
3秒前
3秒前
13发布了新的文献求助30
4秒前
4秒前
orixero应助清爽朋友采纳,获得10
4秒前
凡人完成签到,获得积分10
5秒前
爆米花应助坚强水杯采纳,获得100
5秒前
shenyanlei发布了新的文献求助10
5秒前
欢喜大地发布了新的文献求助10
5秒前
Spencer发布了新的文献求助30
5秒前
随便发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
DTS发布了新的文献求助10
8秒前
8秒前
1851611453完成签到 ,获得积分10
9秒前
刘丰铭发布了新的文献求助10
9秒前
SciGPT应助jhonnyhuang采纳,获得10
9秒前
9秒前
11秒前
sunshine完成签到,获得积分10
11秒前
风清扬发布了新的文献求助10
11秒前
科研通AI6应助结实的栾采纳,获得10
11秒前
AskNature完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13完成签到,获得积分20
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802