CAM evolution is associated with gene family expansion in an explosive bromeliad radiation

生物 基因家族 凤梨科 植物进化 基因组 进化生物学 基因 植物 遗传学
作者
Clara Groot Crego,Jaqueline Hess,Gil Yardeni,Marylaure de La Harpe,Clara Priemer,Francesca Beclin,Sarah Saadain,Luiz Augusto Cauz-Santos,Eva M. Temsch,Hanna Weiss‐Schneeweiss,Michael H. J. Barfuss,Walter Till,Wolfram Weckwerth,Karolina Heyduk,Christian Lexer,Ovidiu Paun,Thibault Leroy
出处
期刊:The Plant Cell [Oxford University Press]
被引量:1
标识
DOI:10.1093/plcell/koae130
摘要

Abstract The subgenus Tillandsia (Bromeliaceae) belongs to one of the fastest radiating clades in the plant kingdom and is characterised by the repeated evolution of Crassulacean acid metabolism (CAM). Despite its complex genetic basis, this water-conserving trait has evolved independently across many plant families and is regarded as a key innovation trait and driver of ecological diversification in Bromeliaceae. By producing high-quality genome assemblies of a Tillandsia species pair displaying divergent photosynthetic phenotypes, and combining genome-wide investigations of synteny, transposable element (TE) dynamics, sequence evolution, gene family evolution and temporal differential expression, we were able to pinpoint the genomic drivers of CAM evolution in Tillandsia. Several large-scale rearrangements associated with karyotype changes between the two genomes and a highly dynamic TE landscape shaped the genomes of Tillandsia. However, our analyses show that rewiring of photosynthetic metabolism is mainly obtained through regulatory evolution rather than coding sequence evolution, as CAM-related genes are differentially expressed across a 24-hour cycle between the two species but are not candidates of positive selection. Gene orthology analyses reveal that CAM-related gene families manifesting differential expression underwent accelerated gene family expansion in the constitutive CAM species, further supporting the view of gene family evolution as a driver of CAM evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
积极慕梅应助xixizi采纳,获得10
1秒前
壹号发布了新的文献求助10
1秒前
桐桐应助LYDZ2采纳,获得10
2秒前
zhajinz发布了新的文献求助10
2秒前
qaw完成签到,获得积分10
2秒前
CodeCraft应助L912294993采纳,获得10
3秒前
芋倪啵啵完成签到 ,获得积分10
3秒前
PMoLGGYM2021发布了新的文献求助10
4秒前
5秒前
星辰大海应助AT采纳,获得10
5秒前
SciGPT应助fff采纳,获得10
8秒前
perry完成签到,获得积分10
8秒前
科研通AI2S应助leyellows采纳,获得10
8秒前
8秒前
8秒前
翟淑雨发布了新的文献求助10
9秒前
添添爱学习完成签到 ,获得积分20
9秒前
px完成签到,获得积分10
10秒前
哎呀我去发布了新的文献求助10
11秒前
12秒前
稳稳完成签到,获得积分10
14秒前
共享精神应助壹号采纳,获得10
14秒前
宋宋发布了新的文献求助10
14秒前
Alias1234发布了新的文献求助10
15秒前
鳗鱼忆山完成签到 ,获得积分10
15秒前
我是老大应助研友_8KAzAn采纳,获得10
15秒前
wangfang0228完成签到 ,获得积分10
17秒前
flowey完成签到,获得积分10
17秒前
领导范儿应助Joseph_LIN采纳,获得10
18秒前
cccc发布了新的文献求助10
18秒前
tt完成签到,获得积分10
19秒前
wanci应助hanj采纳,获得10
19秒前
19秒前
20秒前
20秒前
浪沧一刀发布了新的文献求助10
21秒前
星辰大海应助宋宋采纳,获得10
21秒前
稳稳发布了新的文献求助10
22秒前
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146022
求助须知:如何正确求助?哪些是违规求助? 2797382
关于积分的说明 7824093
捐赠科研通 2453743
什么是DOI,文献DOI怎么找? 1305846
科研通“疑难数据库(出版商)”最低求助积分说明 627593
版权声明 601491