Familiarity, confidence and preference of artificial intelligence feedback and prompts by Australian breast cancer screening readers

乳腺摄影术 乳腺癌 医学 置信区间 乳腺癌筛查 人工智能 背景(考古学) 乳腺癌意识 考试(生物学) 乳房成像 放射科 家庭医学 医学物理学 癌症 计算机科学 内科学 古生物学 生物
作者
Phuong Dung Trieu,Melissa L. Barron,Zhengqiang Jiang,Seyedamir Tavakoli Taba‬,Ziba Gandomkar,Sarah Lewis
出处
期刊:Australian Health Review [CSIRO Publishing]
卷期号:48 (3): 299-311
标识
DOI:10.1071/ah23275
摘要

Objectives This study explored the familiarity, perceptions and confidence of Australian radiology clinicians involved in reading screening mammograms, regarding artificial intelligence (AI) applications in breast cancer detection. Methods Sixty-five radiologists, breast physicians and radiology trainees participated in an online survey that consisted of 23 multiple choice questions asking about their experience and familiarity with AI products. Furthermore, the survey asked about their confidence in using AI outputs and their preference for AI modes applied in a breast screening context. Participants’ responses to questions were compared using Pearson’s χ2 test. Bonferroni-adjusted significance tests were used for pairwise comparisons. Results Fifty-five percent of respondents had experience with AI in their workplaces, with automatic density measurement powered by machine learning being the most familiar AI product (69.4%). The top AI outputs with the highest ranks of perceived confidence were ‘Displaying suspicious areas on mammograms with the percentage of cancer possibility’ (67.8%) and ‘Automatic mammogram classification (normal, benign, cancer, uncertain)’ (64.6%). Radiology and breast physicians preferred using AI as second-reader mode (75.4% saying ‘somewhat happy’ to ‘extremely happy’) over triage (47.7%), pre-screening and first-reader modes (both with 26.2%) (P < 0.001). Conclusion The majority of screen readers expressed increased confidence in utilising AI for highlighting suspicious areas on mammograms and for automatically classifying mammograms. They considered AI as an optimal second-reader mode being the most ideal use in a screening program. The findings provide valuable insights into the familiarities and expectations of radiologists and breast clinicians for the AI products that can enhance the effectiveness of the breast cancer screening programs, benefitting both healthcare professionals and patients alike.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
longmad完成签到,获得积分10
3秒前
QiaoHL完成签到 ,获得积分10
5秒前
5秒前
7秒前
yangjoy完成签到 ,获得积分10
7秒前
ybm3s发布了新的文献求助10
11秒前
雪酪芋泥球完成签到 ,获得积分10
14秒前
Moonflower完成签到,获得积分10
15秒前
16秒前
17秒前
米博士完成签到,获得积分10
17秒前
剑指东方是为谁应助Justtry采纳,获得10
18秒前
张振宇完成签到 ,获得积分10
18秒前
ybm3s完成签到,获得积分10
20秒前
fomo完成签到,获得积分10
24秒前
轴承完成签到 ,获得积分10
25秒前
科研通AI2S应助kk采纳,获得10
25秒前
27秒前
31秒前
鹏826完成签到 ,获得积分10
31秒前
35秒前
36秒前
37秒前
舒适静丹完成签到,获得积分10
37秒前
Yes0419完成签到,获得积分10
38秒前
baner发布了新的文献求助10
40秒前
横扫饥饿发布了新的文献求助10
41秒前
Lanny完成签到 ,获得积分10
41秒前
可爱邓邓完成签到 ,获得积分10
42秒前
甜甜的以筠完成签到 ,获得积分10
42秒前
43秒前
cdercder应助科研通管家采纳,获得10
43秒前
cdercder应助科研通管家采纳,获得10
43秒前
科研通AI2S应助kk采纳,获得10
46秒前
JUAN完成签到,获得积分10
46秒前
丝丢皮的完成签到 ,获得积分10
46秒前
丝丢皮得完成签到 ,获得积分10
50秒前
eee完成签到,获得积分10
53秒前
藜藜藜在乎你完成签到 ,获得积分10
54秒前
横扫饥饿完成签到,获得积分10
57秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733493
求助须知:如何正确求助?哪些是违规求助? 3277642
关于积分的说明 10003648
捐赠科研通 2993705
什么是DOI,文献DOI怎么找? 1642806
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748944