Estimating Aboveground Biomass of Boreal Forests in Northern China Using Multiple Data sets

泰加语 环境科学 遥感 生物量(生态学) 北方的 中国 自然地理学 林业 地质学 地理 海洋学 古生物学 考古
作者
Jianuo Li,Wurigula Bao,Wang Xue-mei,Yingjie Song,Tiantian Liao,Xiaopeng Xu,Meng Guo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-10
标识
DOI:10.1109/tgrs.2024.3408316
摘要

Accurate estimates of aboveground biomass (AGB) are valuable for monitoring forest degradation and carbon stocks on Earth. However, the validity of multiple data types and diverse data combinations for AGB estimation is unclear. In this study, recursive feature elimination (RFE) combined with machine-learning regression models for AGB were developed using field data and multi-source remote sensing data, which included Sentinel-1, Sentinel-2, PALSAR, and DEM. The spatial distribution of AGB was mapped for the Daxing'anling region in the northernmost part of China at 30m resolution. We compared the ability of multiple data combinations to perform AGB estimation and found that using all four types of data combinations resulted in the highest estimation accuracy with fewer predictors. The combination of diverse data sources substantiates enhancements in the precision of AGB estimation, surpassing the utilization of singular or dual sensor modalities. In addition to the optical remote sensing data sentinel-2, topographic data has a non-negligible role in the AGB estimation in this study, even more than microwave remote sensing data. Finally, the extreme gradient boosting model (R 2 =0.67, RMSE=22.57 Mg/ha) based on the combination of all four data types had the highest accuracy and mapped the AGB of the study area. The results indicate that the AGB can be estimated with reasonable accuracy for the boreal forest region based on publicly available multi-source remote sensing data. This study proposes diverse data combinations as well as derived variables for AGB estimation, aiming to explore the possibilities of more remote sensing data in AGB studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助青黛采纳,获得10
刚刚
无花果应助刘老哥6采纳,获得10
刚刚
紫津完成签到 ,获得积分10
1秒前
Hello应助一一采纳,获得10
2秒前
李健的小迷弟应助zhumengyu采纳,获得10
2秒前
狄从灵完成签到,获得积分10
3秒前
3秒前
Lonala完成签到,获得积分10
3秒前
江月完成签到,获得积分10
3秒前
4秒前
852应助whitexue采纳,获得10
4秒前
张子捷发布了新的文献求助10
4秒前
詹密完成签到,获得积分10
5秒前
抓到你啦完成签到,获得积分10
5秒前
6秒前
KYT2022qqXiXi完成签到,获得积分0
6秒前
yy关闭了yy文献求助
6秒前
领导范儿应助江月采纳,获得10
6秒前
7秒前
隐形曼青应助Dd采纳,获得10
7秒前
8秒前
勤恳冰彤完成签到 ,获得积分10
9秒前
FP发布了新的文献求助10
9秒前
zeppeli发布了新的文献求助10
9秒前
Eric完成签到,获得积分10
9秒前
9秒前
会撒娇的一曲完成签到,获得积分10
9秒前
9秒前
传奇3应助甄人达采纳,获得10
10秒前
坤坤完成签到,获得积分10
11秒前
11秒前
zt1812431172完成签到,获得积分10
11秒前
harden9159完成签到,获得积分10
11秒前
刘老哥6发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
大林子完成签到,获得积分10
12秒前
13秒前
516165165完成签到,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134302
求助须知:如何正确求助?哪些是违规求助? 2785212
关于积分的说明 7770748
捐赠科研通 2440808
什么是DOI,文献DOI怎么找? 1297536
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792