Estimating Aboveground Biomass of Boreal Forests in Northern China Using Multiple Data sets

泰加语 环境科学 遥感 生物量(生态学) 北方的 中国 自然地理学 林业 地质学 地理 海洋学 古生物学 考古
作者
Jianuo Li,Wurigula Bao,Xuemei Wang,Yingjie Song,Tiantian Liao,Xiaopeng Xu,Meng Guo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-10 被引量:3
标识
DOI:10.1109/tgrs.2024.3408316
摘要

Accurate estimates of aboveground biomass (AGB) are valuable for monitoring forest degradation and carbon stocks on Earth. However, the validity of multiple data types and diverse data combinations for AGB estimation is unclear. In this study, recursive feature elimination (RFE) combined with machine-learning regression models for AGB were developed using field data and multi-source remote sensing data, which included Sentinel-1, Sentinel-2, PALSAR, and DEM. The spatial distribution of AGB was mapped for the Daxing'anling region in the northernmost part of China at 30m resolution. We compared the ability of multiple data combinations to perform AGB estimation and found that using all four types of data combinations resulted in the highest estimation accuracy with fewer predictors. The combination of diverse data sources substantiates enhancements in the precision of AGB estimation, surpassing the utilization of singular or dual sensor modalities. In addition to the optical remote sensing data sentinel-2, topographic data has a non-negligible role in the AGB estimation in this study, even more than microwave remote sensing data. Finally, the extreme gradient boosting model (R 2 =0.67, RMSE=22.57 Mg/ha) based on the combination of all four data types had the highest accuracy and mapped the AGB of the study area. The results indicate that the AGB can be estimated with reasonable accuracy for the boreal forest region based on publicly available multi-source remote sensing data. This study proposes diverse data combinations as well as derived variables for AGB estimation, aiming to explore the possibilities of more remote sensing data in AGB studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
wang发布了新的文献求助10
2秒前
有足量NaCl发布了新的文献求助10
3秒前
淳于三问完成签到,获得积分10
3秒前
小镇牛马发布了新的文献求助10
3秒前
可爱的函函应助大曼采纳,获得10
4秒前
霜序完成签到,获得积分10
5秒前
5秒前
7秒前
lucky李完成签到,获得积分20
7秒前
豆豆发布了新的文献求助10
8秒前
我不吃葱发布了新的文献求助10
8秒前
8秒前
Owen应助Michael_li采纳,获得10
8秒前
weiweiwu12完成签到,获得积分10
9秒前
麦子发布了新的文献求助10
9秒前
9秒前
11秒前
大模型应助王老吉采纳,获得10
11秒前
12秒前
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
k7应助科研通管家采纳,获得10
13秒前
SHAO应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
彭于彦祖应助科研通管家采纳,获得30
13秒前
华仔应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
柏林寒冬应助dada采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
zho应助科研通管家采纳,获得10
13秒前
YamDaamCaa应助科研通管家采纳,获得30
13秒前
打打应助科研通管家采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992746
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263200
捐赠科研通 3273346
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809609