亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Resource utilization of copper slag for microelectrolysis material preparation for phenol degradation

降级(电信) 苯酚 熔渣(焊接) 资源(消歧) 铜渣 废物管理 资源回收 环境科学 化学 材料科学 冶金 计算机科学 有机化学 工程类 废水 电信 计算机网络
作者
Guihong Han,Baogang Cai,Shuzhen Yang,Xin Ding,Bingbing Liu,Yanfang Huang
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:12 (4): 113151-113151 被引量:12
标识
DOI:10.1016/j.jece.2024.113151
摘要

Microelectrolysis (ME) is an efficient method for treating organic wastewater. The utilization of copper slag for high-performance microelectrolysis material preparation for pollutant degradation is meaningful for environmental conservation. Herein, a Fe-Cu-C microelectrolysis material (MEM) was prepared by carbothermal reduction with copper slag, copper powder and anthracite as the raw materials for phenol degradation in wastewater. The phase and structural transformations that occur in the reduction process of copper slag during MEM preparation were investigated via X-ray diffraction (XRD) and an electroprobe microanalyzer (EPMA). The prepared Fe-Cu-C MEMs were characterized by XRD, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The anchored structure of the iron droplets on the SiO2 bulk surface is beneficial for the microelectrolysis reaction as well as for the stability of the microstructure. The Fe-Cu-C MEM displayed wide pH and temperature application ranges for phenol degradation. Interestingly, 1O2 was found to play a critical role in phenol degradation in the ME system. Under the optimal conditions, the phenol degradation efficiency of Fe-Cu-C MEM reached 96.48% after 60 min, with chemical oxygen demand and total organic carbon removal rates of 82.65% and 67.34%, respectively. This research provides a feasible method for the production of Fe-Cu-C MEM and the degradation of phenol in wastewater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
温柔的水卉完成签到,获得积分10
2秒前
憨憨的跳跳完成签到 ,获得积分10
3秒前
belolit发布了新的文献求助10
6秒前
wang@163.com完成签到,获得积分20
6秒前
三两白菜完成签到,获得积分10
11秒前
今后应助flyingdodoro采纳,获得10
13秒前
sidashu完成签到,获得积分10
16秒前
一个大花瓶完成签到 ,获得积分10
18秒前
18秒前
Bin_Liu发布了新的文献求助10
22秒前
陈陈完成签到,获得积分10
25秒前
cyt完成签到,获得积分10
26秒前
sss完成签到 ,获得积分10
29秒前
科目三应助cyt采纳,获得10
35秒前
35秒前
flyingdodoro完成签到,获得积分10
42秒前
44秒前
45秒前
中微子完成签到 ,获得积分10
46秒前
flyingdodoro发布了新的文献求助10
49秒前
无极微光应助科研通管家采纳,获得20
51秒前
mzf发布了新的文献求助10
51秒前
52秒前
cyt发布了新的文献求助10
58秒前
量子星尘发布了新的文献求助10
1分钟前
Kkk完成签到 ,获得积分10
1分钟前
起风了完成签到 ,获得积分10
1分钟前
MetaMysteria完成签到,获得积分10
1分钟前
木有完成签到 ,获得积分10
1分钟前
郁启蒙完成签到 ,获得积分10
1分钟前
逆光完成签到 ,获得积分10
1分钟前
寒霜扬名完成签到 ,获得积分10
1分钟前
1分钟前
大模型应助diaoyulao采纳,获得10
1分钟前
Noor完成签到,获得积分10
1分钟前
润润润完成签到 ,获得积分10
1分钟前
周依依发布了新的文献求助10
1分钟前
杨怂怂发布了新的文献求助50
1分钟前
luster完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634616
求助须知:如何正确求助?哪些是违规求助? 4731648
关于积分的说明 14988748
捐赠科研通 4792317
什么是DOI,文献DOI怎么找? 2559479
邀请新用户注册赠送积分活动 1519764
关于科研通互助平台的介绍 1479903