Performance degradation assessment of rolling bearings based on the comprehensive characteristic index and improved SVDD

降级(电信) 索引(排版) 计算机科学 可靠性工程 工程类 环境科学 电信 万维网
作者
Yongzhi Du,Yu Cao,Hao Chen Wang,Guohua Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086122-086122 被引量:3
标识
DOI:10.1088/1361-6501/ad480a
摘要

Abstract Rolling bearing is one of the most critical parts of mechanical equipment, so the performance degradation assessment of rolling bearing is vital to ensure the normal operation of the whole mechanical equipment. Aiming at the problems that a single degradation characteristic can only contain limited performance degradation information of rolling bearings, a large number of redundant characteristics exist in the high-dimension characteristic set resulting in the inability to effectively mine the characteristic information of rolling bearings, and that traditional degradation assessment models are not suitable for the shortage of fault data during the actual operation of rolling bearings, a performance degradation assessment method of rolling bearings based on the comprehensive characteristic index and improved support vector data description (SVDD) is proposed in this paper. Firstly, to solve the parameter selection problem of variational mode decomposition (VMD), a parameter-adaptive VMD method based on salp swarm algorithm based on mixed strategy (MSSSA) is proposed. Secondly, to extract the performance degradation information of rolling bearings more comprehensively and fully, the comprehensive characteristic index is proposed. Then, a kernel locality preserving projection orthogonal kernel principal component analysis (KLPPOKPCA) method is proposed to reduce the dimensionality of the extracted multi-domain characteristic set of the rolling bearing. Finally, a support vector data description with negative samples (NSSVDD) is proposed and optimized by MSSSA to solve the problem that traditional degradation assessment models are not suitable for the shortage of fault data during the actual operation of rolling bearings and improve the detection performance of abnormal data. The experimental results show that the proposed method can accurately divide the performance degradation process of the rolling bearing. Moreover, the comparison with other methods further highlights the superiority of the proposed method in determining the point in time of early fault of the rolling bearing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tiantian完成签到 ,获得积分10
1秒前
yiyi完成签到 ,获得积分20
2秒前
Owen应助XUXU采纳,获得10
3秒前
婷儿完成签到,获得积分10
4秒前
无聊的羊发布了新的文献求助10
4秒前
脑洞疼应助多变的卡宾采纳,获得20
6秒前
丘比特应助感动的11采纳,获得30
7秒前
sunny完成签到 ,获得积分10
8秒前
666发布了新的文献求助10
8秒前
852应助JamRoss采纳,获得10
9秒前
10秒前
慕青应助陈柚瑾采纳,获得10
11秒前
小狒狒完成签到,获得积分10
13秒前
打打应助反暗采纳,获得10
13秒前
酷波er应助Jere采纳,获得10
14秒前
14秒前
14秒前
科研通AI6应助niko采纳,获得10
14秒前
眼睛大又蓝完成签到,获得积分10
16秒前
眉间一把刀完成签到,获得积分10
17秒前
执着寄容完成签到,获得积分10
18秒前
XUXU发布了新的文献求助10
18秒前
浮游应助缥缈的机器猫采纳,获得10
18秒前
晴子完成签到,获得积分10
18秒前
嘿嘿发布了新的文献求助200
19秒前
Dorren完成签到,获得积分10
19秒前
落阳发布了新的文献求助10
20秒前
saber完成签到 ,获得积分10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
22秒前
wanci应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
BowieHuang应助科研通管家采纳,获得10
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
yy111发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
顺心醉蝶完成签到 ,获得积分10
24秒前
yuliuism应助zxc采纳,获得50
24秒前
He完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569472
求助须知:如何正确求助?哪些是违规求助? 4654055
关于积分的说明 14709558
捐赠科研通 4595803
什么是DOI,文献DOI怎么找? 2521985
邀请新用户注册赠送积分活动 1493327
关于科研通互助平台的介绍 1463946