量子位元
光子
单重态
接口(物质)
光子晶体
物理
自旋(空气动力学)
Crystal(编程语言)
光电子学
量子力学
量子
激发态
计算机科学
分子
吉布斯等温线
程序设计语言
热力学
作者
Kui Wu,Sebastian Kindel,Thomas Descamps,Tobias Hangleiter,Jan Christoph Müller,Rebecca Rodrigo,Florian Merget,Beata Kardynał,Hendrik Bluhm,Jeremy Witzens
出处
期刊:Physical review applied
[American Physical Society]
日期:2024-05-24
卷期号:21 (5)
被引量:1
标识
DOI:10.1103/physrevapplied.21.054052
摘要
Efficient interconnection between distant semiconductor spin qubits with the help of photonic qubits offers exciting new prospects for future quantum communication applications. In this paper, we optimize the extraction efficiency of a novel interface between a singlet-triplet-spin-qubit and a photonic-qubit. The interface is based on a 220-nm-thick $\mathrm{Ga}\mathrm{As}/(\mathrm{Al},\mathrm{Ga})\mathrm{As}$ heterostructure membrane and consists of a gate-defined double quantum dot (GDQD) supporting a singlet-triplet qubit, an optically active quantum dot (OAQD) consisting of a gate-defined exciton trap, a photonic crystal cavity providing in-plane optical confinement, efficient outcoupling to an ideal free-space Gaussian beam while accommodating the gate wiring of the GDQD and OAQD, and a bottom gold reflector to recycle photons and increase the optical extraction efficiency. All the essential components can be lithographically defined and deterministically fabricated on the $\mathrm{Ga}\mathrm{As}/(\mathrm{Al},\mathrm{Ga})\mathrm{As}$ heterostructure membrane, which greatly increases the scalability of on-chip integration. According to our simulations, the interface provides an overall coupling efficiency of 28.7% into a free-space Gaussian beam, assuming a ${\mathrm{Si}\mathrm{O}}_{2}$ interlayer fills the space between the reflector and the membrane. The performance can be further increased by undercutting this ${\mathrm{Si}\mathrm{O}}_{2}$ interlayer below the photonic crystal. In this case, the overall efficiency is calculated to be 48.5%.
科研通智能强力驱动
Strongly Powered by AbleSci AI